Métatranscriptomique un regard sur les fonctions biochimiques oeuvrant dans le sol

66	Sol	>F11P2S103GXZIZ length=487 xy=2730_1417 region=3 run=R_2009_08	données ADN
		TGGTATCAACGCAGAGTACGGGGGAGATTCATATCTAAATCCCATTAAAAACAAAATAAGC ATCTAATTTTAAATGCCAAAGGAAAAGATCCATATTAACTTAGTCGTCATTGGTCATGTC GACTCCGGTAAATCAACCTCCACTGGTCATTTAATCTACAAATGCGGTGGTATCGATAAA AGAACCATTGAAAAATTCGAGAAAGAAGCCAACGATATGGGTAAAGGTTCATTCA	
	ARN	GCTTGGGTTTTGGACAAACTCAAGGCTGAAAAGAGAAAGAGGTATTACCATCGATATTTC CCTCTGGAAATTCGAATCACCAAAATACTACTTCACCATCATTGATGCCCCAGGACACAG AGATTTTATCAAGAACATGATTACAGGTACATCCCAAGCTGATTGTGCTATTCTTATGAT TGCTTCACCACAAGGTGAGTTCGAAGCTGGTATTTCCCAAGGAAGG	 ∠ gène X
	ARN polyA+	TGCACTT >F11P2S103GZ6GQ length=397 xy=2755_1320 region=3 run=R_2009_08 AAGCAGTGGTATCAACGCAGAGTAGGGGCAGGGAGATTTTAGTCAAGGTTCACAACACTC AGTCCAATCAAATGATATCTGAGTTCGTAAATGAGGTGGTACTCTTCCAAGGCTACAGAT	
	cDNA	CAAAGGGTGTCCTTGGGGCTAACACAGAGAGCTTGCATGAAGGTTTTGCTGGACCACAGTG CTGATGTACTAGTTCCTCTAGTTCAATTGTTTGATTAATGAACTTGTTTGATTAAG GTATAATTTTAGTGTTTGTGGAATTAGCTAATGTAATTTGTATTATGAAAATGTGGTATT ATTATTGTGTTATTTAGTGAAATTTGAATGTAAATGCGGGAATTAATATGTAAAATTTCTA TTGATATTTGAATTAGTGATACTACAAAAAAAAAA	gène Y gè
	Séquencage NGS	>F1IP2S103G715H length=470 xy=2845_0339 region=3 run=R_2009_08 TCTCCGACTCAGACGAGTGCGTAAGCAGTAGTATCAACGCAGAGTACGGGGGGACAACCAA ATTCACATAACCAATTCAAATAATAAAACAAAATCCAAACAAAGCAAAAATGAAATT CTCTCAAATCTTCTCTACTCTCTTTCACTTTGTATTCACCATGGGCCATGAGTGG TCCCGCTGCAAAGGCCGCCCCCAATGCTGCCCCTGATGCCAAGGCCTACGGCCTACTACCA CCATTACGATCCATCATACGTCACGGTCACAGTCACTGACTATTCACAACTACTGTATA TGAAAAATCCCCTTATTATTATTCATAAATCTTATTGACAAATCATTTTTCTGTA ATATGAGGTCTAAAATCTTTCGTGGGAAATTTAAAAATTTAATTAA	< <u>?</u>
		ATTGITATGTAATTTTTCAACAGCTGTTATAAAGTTCATTTTAATTTAAT	classification

cDNA fragments

 \dots 10⁵ to 10⁷ lectures

Profil fonctionnel du sol

Bases de

Comparaison des profils d'expression de deux sols :

Exploration d'une classification hiérarchique des fonctions des gènes

Une comparaison des métatranscriptomes de deux sols alpins

Tarafa Mustafa, Roberto Geremia, Philippe Choler, Eric Coissac, Armelle Monier, Lucie Zinger,

Jean-Marc Bonneville

GLOXANI

Pic des Trois Evêchés

Atelier transversal Sols, OSUG, 30 mars 2012

2007, Solexa

Nouvelles stratégies de séquencage d'ADN (NGS)

Nouvelles questions à poser à l'ARNm

Quelles sont les biota actifs dans le sol ?

Quelles sont les fonctions biochimiques exprimées ?

Discerne t'on des différences d'expression ?

Quand l'enneigement fait la différence combe à neige (LSM) et crète (ESM)

-	Accumulation de	MO	+
≈ 11%	SOM	≈ 22	% SOM
	Croissance végé	tale	

🖕 Décomposition des litières 🖕

Baptist et al, 2010.

Métatranscriptomes : lectures d'ARN ribosomiques et de mRNA putatifs

Une majorité de cDNA codants

Structure Taxonomique

- ARN polyA+ > zoom sur les organismes eukaryotes
- 1 champignons
- 2 plantes
- ➤ 3- animaux
- \succ (faible resolution)

Auto-assemblage et annotations externes

Comparaison des profils d'expression de deux sols :

Exploration d'une classification hiérarchique des fonctions des gènes

Metabolisme du sucre : des voies métaboliques divergentes entre les deux sols

Résumé et conclusions

L'ARN permet une analyse des fonctions biochimiques du sol

Ebauches de structure taxonomique par les ARN codants

Trois systèmes d'annotations des ARNm: recoupements utiles

Un échantillon (ESM) plus économe qu'un autre (LSM) pour le métabolisme énergétique: cf rythme de croissance des plantes

Nécessité de réplicats de sites pour valider

Eumetasol

Merci de votre attention

Metabolisme du sucre : des voies métaboliques divergentes entre les deux sols

