Numerical simulations of astrophysical flows with RAMSES

Extension to relativistic hydrodynamics

Astrid Lamberts Guillaume Dubus - Sébastien Fromang

IPAG -Sap

Atelier Fluides, OSUG, June, 18 2012

< A > < 3

A. Lamberts Colliding wind binaries

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$$
$$\frac{\partial (\rho \mathbf{v})}{\partial t} + \nabla (\rho \mathbf{v} \mathbf{v}) + \nabla P = 0$$
$$\frac{\partial E}{\partial t} + \nabla \cdot [\mathbf{v}(E+P)] = 0$$

Compressible flows, possibly highly supersonic Viscous terms neglected

< /₽ > < E > .

Finite volume method

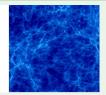
$$\frac{\partial \mathbf{U}}{\partial t} + \frac{\partial \mathbf{F}^{\mathbf{i}}}{\partial x^{i}} = 0 \Leftrightarrow \frac{\mathbf{U}_{i}^{n+1} - \mathbf{U}_{i}^{n}}{\Delta t} + \frac{\mathbf{F}_{i+1/2}^{n+1/2} - \mathbf{F}_{i-1/2}^{n+1/2}}{\Delta x} = 0$$
with

- 1 /0

- 1 /0

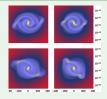
→ < Ξ → <</p>

$$U_{i}^{n} = \frac{1}{\Delta x} \int_{x_{i}-1/2}^{x_{i}+1/2} U(x, t^{n}) dx$$

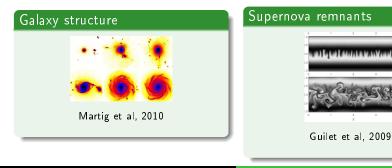

$$F_{i\pm1/2}^{n+1/2} = \frac{1}{\Delta t} \int_{t^{n}}^{t^{n+1}} F(x_{i\pm1/2}, t^{n+1/2}) dt$$

$$F_{i\pm1/2}^{n+1/2} = \frac{1}{\Delta t} \int_{t^{n}}^{x_{i+1/2}} F(x_{i\pm1/2}, t^{n+1/2}) dt$$

The fluxes are determined by solving a Riemann problem at the interfaces between cells. Well adapted for shocks.

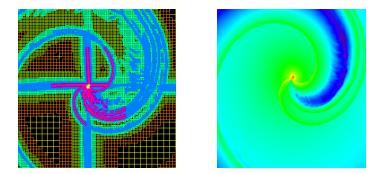

RAMSES (Teyssier, 2002)

Cosmological simulations



Projet Horizon, Prunet et al, 2008

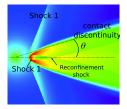
Star formation



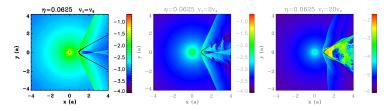
Commerçon et al, 2008

A. Lamberts Colliding wind binaries

Very wide range of spatial scales \Rightarrow adaptive mesh refinement (AMR)

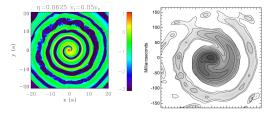


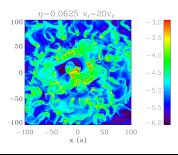
AMR and density map refinement occurs at shocks and discontinuities


▲ 同 ▶ ▲ 国 ▶ ▲

Application : colliding wind binaries

- Massive stars → supersonic winds (M ≥ 30)
- Binary system → double shocked structure

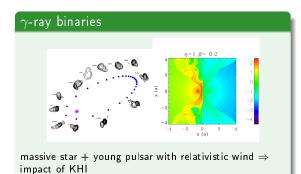

Shocked structure


Numerical simulations with increasing velocity gradients.

What happens at larger scales?

Application : colliding wind binaries

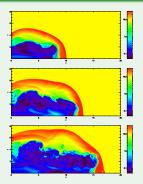
Simulation and observation of large scale spiral structure



⇒ Spiral structure not maintained in all cases due to KHI

- Rest frame of the fluid \neq frame of the laboratory
- v<c \rightarrow relativistic summation of velocity
- Lorentz factor $\Gamma = (1 v^2)^{-1/2}$

Equations have similar structure to HD equations but are more complex due to coupling by the Lorentz factor Tranverse velocities impact the sctruture of the flow


Possible applications

numerical challenge

- Different timescales
- High Lorentz factors \rightarrow high resolution

Relativistic jets

Jets interacting with surroundings in microquasars, active galactic nuclei or gamma-ray bursts