E. Witrant

Direct model

CH4 transport NEEM

Interconnected networks

Conservation in open pores

Validation on isotopic indicators

Inverse diffusivity

Problem formulation Multi-gas results validation with $\delta^{15}N$ Diffusivities

Inverse scenario δ^{13} C of CFC-12 δ^{13} C of CFC-12

Results

Heptafluoropropanein atmosphere CO budget

Modeling the recent anthropogenic impact on the atmosphere from polar firn measurements

Emmanuel WITRANT¹, Patricia MARTINERIE² et al.³

¹GIPSA-lab (Systems & Control Department)
 ²Laboratoire de Glaciologie et Géophysique de l'Environnement (LGGE)
 ³NEEM gas modelling group (>14 countries, 6 firn models), CIC (Denmark), IMAU (Netherlands), INSTAAR (USA), Stony Brook (USA), UEA (UK)

Atelier fluides OSUG, June 18th, 2012

E. Witrant

Direct model

CH₄ transport NEEM

Interconnected networks

Conservation in open pores

Validation on isotopic indicators

Inverse diffusivity

Problem formulation Multi-gas results validation with $\delta^{15}N$ Diffusivities

Inverse scenario δ^{13} C of CFC-12 δ^{13} C of CFC-12

Results

Heptafluoropropanein atmosphere CO budget Trace gas measurements in interstitial air from polar firn

- allow to reconstruct their atmospheric concentration time trends over the last 50 to 100 years
- provides a unique way to reconstruct the recent anthropogenic impact on atmospheric composition

Converting depth-concentration profiles in firn into atmospheric concentration histories requires models of trace gas transport in firn Background : previous (and first) version of LGGE firn models : Rommelaere et al., Ph.D. 1995, JGR, 1997

Motivation

E. Witrant

Direct model

CH₄ transport at NEEM

- Interconnected networks
- Conservation in open pores
- Validation on isotopic indicators

Inverse diffusivit

Problem formulation Multi-gas results validation with $\delta^{15} N$ Diffusivities

Inverse scenario δ¹³C of CFC-1 δ¹³C of CFC-1

Results

Heptafluoropropanein atmosphere CO budget

Direct model I.e. CH₄ transport at NEEM (Greenland)

SOR

E. Witrant

Direct model

CH₄ transport a NEEM

Interconnected networks

Conservation in open pores

Validation on isotopic indicators

Inverse diffusivity

Problem formulation Multi-gas results validation with $\delta^{15} N$ Diffusivities

0 0

Inverse scenario δ^{13} C of CFC-12 δ^{13} C of CFC-12

Results

Heptafluoropropanein atmosphere CO budget

Poromechanics : three interconnected networks

Ice lattice, gas connected to the surface (open pores) and gas trapped in bubbles (closed pores) :

$$\frac{\partial [\rho_{ice}(1-\epsilon)]}{\partial t} + \nabla [\rho_{ice}(1-\epsilon)\vec{v}] = 0$$

$$\frac{\partial [\rho_{gas}^{\circ} f]}{\partial t} + \nabla [\rho_{gas}^{\circ} f(\vec{v} + \vec{w}_{gas})] = -\vec{r}^{\circ \to \circ}$$

$$\frac{\partial [\rho_{gas}^{c}(\epsilon-f)]}{\partial t} + \nabla [\rho_{gas}^{c}(\epsilon-f)\vec{v}] = \vec{r}^{o \to c}$$

Scheme adapted from [Sowers et al.'92, Lourantou'08].

イロト イボト イヨト イヨト

E. Witrant

Direct model

CH4 transpor NEEM

Interconnected networks

Conservation in open pores

Validation on isotopic indicators

Inverse diffusivity

Problem formulation Multi-gas results validation with $\delta^{15}N$ Diffusivities

Inverse scenario δ^{13} C of CFC-12 δ^{13} C of CFC-12

Results

Heptafluoropropanein atmosphere CO budget

Trace gas conservation in open pores [Rommelaere & al.'97, Witrant & al.'11]

- Flux driven by advection with air and firn sinking
- Flux driven by mol. diff. due to concentration gradients
- Flux driven by external forces : gravity included with Darcy-like flux
- Sink = particles trapped in bubbles & radioactive decay
- Boundary input : surface concentration
- Results in transport PDE :

$$\frac{\partial}{\partial t}[\rho_{\alpha}^{\circ}f] + \frac{\partial}{\partial z}[\rho_{\alpha}^{\circ}f(\mathbf{v} + \mathbf{w}_{air})] + \rho_{\alpha}^{\circ}(\tau + \lambda) - \frac{\partial}{\partial z}\left[\mathbf{D}_{\alpha}\left(\frac{\partial\rho_{\alpha}^{\circ}}{\partial z} - \rho_{\alpha}^{\circ}\frac{\partial\rho_{air}/\partial z}{\rho_{air}} + \mathcal{A}_{ss}\right)\right] = \mathbf{0}$$
$$\rho_{\alpha}^{\circ}(\mathbf{0}, t) = \rho_{\alpha}^{atm}(t), \quad \frac{RT}{M_{f}}\frac{\partial\rho_{\alpha}^{\circ}}{\partial z}(z_{f}) - \rho_{\alpha}^{\circ}(z_{f}) = \mathbf{0}$$

with \mathcal{A}_{ss} such that $\partial [\rho^o_{\alpha,ss} f] / \partial t = 0$ at steady state, i.e.

$$\mathcal{A}_{ss} = -\frac{\rho_{\alpha,ss}^{o}f}{D_{\alpha}}(w_{\alpha} - w_{air}) - \left(\frac{\partial \rho_{\alpha,ss}^{o}}{\partial z} - \rho_{\alpha,ss}^{o}\frac{\partial \rho_{air}/\partial z}{\rho_{air}}\right)$$

Validation on isotopic indicators

E. Witrant

Validation on isotopic indicators : $\delta^{15}N$ ($\delta^{40}Ar$, $\delta^{86}Kr$)

Results

Heptafluoropropaneii atmosphere CO budget Fick only (blue '—'), QSS (exact in blue '- - -' and gas speed set by air speed in red), QSS with forced LIZ (pink '—'),

QSS with $z_{conv} = 4 \text{ m}$: hydrostatic $\rho_{\alpha,ss}^{o}$ (green), + max D set by the one in free air + gas-indep term (pink '- - '), + $z_{conv} = z_{eddy}$ (turquoise), Ref case (black) : simplified QSS with $z_{conv} = 4 \text{ m}$ and a max mol. diffu. corrected with the porosity

E. Witrant

Direct model

CH₄ transport NEEM

Interconnected networks

Conservation in open pores

Validation on isotopic indicators

Inverse diffusivity

Problem formulation

Multi-gas results validation with $\delta^{15} N$ Diffusivities

Inverse scenario δ^{13} C of CFC-12 δ^{13} C of CFC-12

Results

Heptafluoropropanein atmosphere CO budget

Inverse diffusivity model

Problem formulation

• Least squares minimization (single gas) :

$$D_{\alpha}^{*} = \arg\min_{D_{\alpha}} \frac{1}{z_{f}} \int_{0}^{z_{f}} \frac{1}{\sigma_{\alpha}^{2}} \left(m_{\alpha} - \frac{\rho_{\alpha}^{o}(D_{\alpha})}{\rho_{air}^{o}} \right)^{2} \delta_{\alpha} dz$$

with the constraints D(z) > 0 and dD/dz < 0

• For N gas :

$$D^*_{CO_2} = \arg\min_{D_{CO_2}} \sum_{i=1}^N \frac{1}{z_f} \int_0^{z_f} \frac{1}{\sigma_{\alpha_i}^2} \left(m_{\alpha_i} - \frac{\rho_{\alpha_i}^o(D_{CO_2})}{\rho_{air}^o} \right)^2 \delta_{\alpha_i} dz$$

Nonlinear optimization problem (at least with implicit schemes)

E. Witrant

Direct model

CH₄ transport NEEM

Interconnected networks

Conservation in open pores Validation on isotopic

Validation on isotopic indicators

Inverse diffusivity

Problem formulation Multi-gas results validation with $\delta^{15} N$

Diffusivities

Inverse scenario δ^{13} C of CFC-12 δ^{13} C of CFC-12

Results

Heptafluoropropanein atmosphere CO budget

Result = Diffusivities at 11 sites (13 holes) [ACPD'11]

Arctic (dashed) : Devon Island (black), Summit (blue), NEEM-EU (purple) and NEEM-US (brown), North GRIP (green).

Antarctic (continuous) : DE08 (orange), Berkner (purple), Siple (yellow), South Pole 1995 (dark blue), South Pole 2001 (light blue), Dronning Maud Land (black), Dome C (green) and Vostok (brown)

- Low diffusivity at Devon Island due to melt layers
- High diffusivity in upper firn related to convection
- Very consistent diff. at intermediate depths (0.1-0.3)
- High diff. in deep firn at Vostok and Dome C (low accu. and cold), consistent with very young ages and no plateau in $\delta^{15}N$

E. Witrant

Direct mode

CH₄ transport NEEM

Interconnected networks

Conservation in open pores

Validation on isotopic indicators

Inverse diffusivity

Problem formulation Multi-gas results validation with $\delta^{15}N$ Diffusivities

Inverse scenario

 δ^{13} C of CFC-12 δ^{13} C of CFC-12

Results

Heptafluoropropanein atmosphere CO budget

Inverse scenario model

- A "deconvolution" approach [Rommelaere et al., JGR, 1997]
 - Green function = impulse response of the firn ⇒ age probabilities

$$\rho_{firn}(z, t_f) = G(z, t) * \rho_{atm}(t)$$
 convolution

• Deconvolution :

$$\begin{aligned} \epsilon(z) &= G(z,t)\rho_{atm}(t) - \rho_{firn}(z,t_f) \\ \rho_{atm}^*(t) &= \arg\min_{\rho_{atm}} \left[\epsilon^{\mathsf{T}} (diag\{1/\sigma_{mes}^2(z)\}) \epsilon + \kappa^2 \rho_{atm}^{\mathsf{T}} \mathsf{R} \rho_{atm} \right] \end{aligned}$$

- Under-constrained pb \Rightarrow add extra information with rugosity characteristic matrix R > 0 (i.e. d^2/dt^2) + κ .
- 2 parameters largely control model behavior : κ (rugosity factor) and $\sigma^2_{mes}(z)$
- ⇒ Extension to multi-site and isotopic ratios (time-varying parameters, robust cross-validation)

E. Witrant

Direct model

CH₄ transport a NEEM

Interconnected networks

Conservation in open pores

Validation on isotopi indicators

Inverse diffusivity

Problem formulation Multi-gas results validation with $\delta^{15}N$ Diffusivities

Inverse scenario

 δ^{13} C of CFC-12 δ^{13} C of CFC-12

Results

Heptafluoropropanein atmosphere CO budget

Inverse scenario for δ^{13} C of CFC-12 at NEEM EU 2008 [Zuiderweg et al. 2012]

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

E. Witrant

Direct mode

CH₄ transport NEEM

Interconnected networks

Conservation in open pores

Validation on isotopi indicators

Inverse diffusivity

Problem formulation Multi-gas results validation with $\delta^{15} N$ Diffusivities

Inverse scenario

 $\delta^{13}\mathrm{C}$ of CFC-12

Results

Heptafluoropropanein atmosphere CO budget

Resulting firn concentrations

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

E. Witrant

Direct model

CH₄ transport NEEM

Interconnected networks

Conservation in ope pores

Validation on isotopi indicators

Inverse diffusivity

Problem formulation Multi-gas results validation with $\delta^{15}N$ Diffusivities

Inverse scenario δ^{13} C of CFC-12 δ^{13} C of CFC-12

Results

Heptafluoropropanein atmosphere

Accelerating growth of HFC-227ea in the atmosphere [Laube *et. al*¹10]

- HFC-227ea = substitute for ozone depleting compounds
- Firn air samples collected in Greenland used to reconstruct a history of atmospheric abundance from 2000 to 2007
- Acceleration in growth rate confirmed by upper tropospheric air samples in 2009
- Stratospheric lifetime of 370 years calculated with samples from high altitude aircraft and balloons

< ロ > < 同 > < 回 > < 回 >

E. Witrant

Direct model

CH4 transport a NEEM

Interconnected networks

Conservation in open pores

Validation on isotopic indicators

Inverse diffusivity

Problem formulation Multi-gas results validation with $\delta^{15} N$ Diffusivities

Inverse scenario δ^{13} C of CFC-12 δ^{13} C of CFC-12

Results

Heptafluoropropanei atmosphere

CO budget

The isotopic record of Northern Hemisphere atmospheric carbon monoxide since 1950, implications for the CO budget [Wang *et. al* 12]

 \Rightarrow Increase untill the 70s then drop (i.e. associated with fossil fuel : catalytic converters and diesel engines)

E. Witrant

Direct model

CH₄ transport NEEM

Interconnected networks

Conservation in open pores

Validation on isotopic indicators

Inverse diffusivity

Problem formulation Multi-gas results validation with $\delta^{15}N$ Diffusivities

Inverse scenario δ^{13} C of CFC-12 δ^{13} C of CFC-12

Results

Heptafluoropropanein atmosphere

CO budget

Other results

- Atmospheric impacts and ice core imprints of a methane pulse from clathrates [Bock *et. al* 12]
- Extreme ¹³C depletion of CCI2F2 in firn air samples from NEEM, Greenland [Zuiderweg *et. al*^{*}12]
- Emissions halted of the potent greenhouse gas SF5CF3 [Sturges *et. al*^{*}12]
- Distributions, long term trends and emissions of four perfluorocarbons in remote parts of the atmosphere and firn air [Laube *et. al* 12]
- Reconstruction of the carbon isotopic composition of methane over the last 50 yr based on firn air measurements at 11 polar sites [Sapart *et. al* 12]
- Natural and anthropogenic variations in methane sources over the last 2 millennia [Sapart *et. al* 12]