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Motivation

Trace gas measurements in interstitial air
from polar firn

• allow to reconstruct their atmospheric
concentration time trends over the last
50 to 100 years

• provides a unique way to reconstruct
the recent anthropogenic impact on
atmospheric composition

Converting depth-concentration profiles in
firn into atmospheric concentration histories
requires models of trace gas transport in firn
Background : previous (and first) version of
LGGE firn models : Rommelaere et al.,
Ph.D. 1995, JGR, 1997
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Direct model
I.e. CH4 transport at NEEM (Greenland)
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Poromechanics : three interconnected networks

Ice lattice, gas connected to the
surface (open pores) and gas
trapped in bubbles (closed pores) :

∂[ρice(1 − ǫ)]

∂t
+ ∇[ρice(1 − ǫ)~v ] = 0

∂[ρo
gasf ]

∂t
+ ∇[ρo

gas f(~v + ~wgas)] = −~r
o→c

∂[ρc
gas(ǫ − f)]

∂t
+ ∇[ρc

gas(ǫ − f)~v] = ~ro→c

Scheme adapted from [Sowers
et al.’92, Lourantou’08].
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Trace gas conservation in open pores [Rommelaere & al.’97,
Witrant & al.’11]

• Flux driven by advection with air and firn sinking

• Flux driven by mol. diff. due to concentration gradients

• Flux driven by external forces : gravity included with
Darcy-like flux

• Sink = particles trapped in bubbles & radioactive decay

• Boundary input : surface concentration

• Results in transport PDE :

∂

∂t
[ρo
αf ] +

∂

∂z
[ρo
αf(v + wair )] + ρ

o
α(τ+ λ) −

∂

∂z

[

Dα

(

∂ρo
α

∂z
− ρo

α

∂ρair/∂z
ρair

+Ass

)]

= 0

ρo
α(0, t) = ρ

atm
α (t),

RT
Mf

∂ρo
α

∂z
(zf) − ρ

o
α(zf) = 0

with Ass such that ∂[ρo
α,ssf ]/∂t = 0 at steady state, i.e.

Ass = −
ρo
α,ss f

Dα
(wα − wair) −

(

∂ρo
α,ss

∂z
− ρo

α,ss
∂ρair/∂z
ρair

)

⇒ Need to identify the firn diffusivity D !
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Validation on isotopic indicators : δ15N (δ40Ar , δ86Kr)

Fick only (blue ‘—’), QSS (exact in blue ‘- - -’ and gas speed set by air speed
in red), QSS with forced LIZ (pink ‘—’),

QSS with zconv = 4 m : hydrostatic ρo
α,ss (green), + max D set by the one in

free air + gas-indep term (pink ‘- - -’), + zconv = zeddy (turquoise),
Ref case (black) : simplified QSS with zconv = 4 m and a max mol. diffu.

corrected with the porosity
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Inverse diffusivity model

Problem formulation

• Least squares minimization (single gas) :

D∗α = arg min
Dα

1
zf

∫ zf

0

1

σ2
α

(

mα −
ρo
α(Dα)

ρo
air

)2

δαdz

with the constraints D(z) > 0 and dD/dz < 0

• For N gas :

D∗CO2
= arg min

DCO2

N
∑

i=1

1
zf

∫ zf

0

1

σ2
αi

(

mαi −
ρo
αi
(DCO2)

ρo
air

)2

δαi dz

• Nonlinear optimization problem (at least with implicit
schemes)
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Result = Diffusivities at 11 sites (13 holes) [ACPD’11]

Arctic (dashed) : Devon Island (black), Summit (blue), NEEM-EU (purple) and NEEM-US (brown), North GRIP
(green).

Antarctic (continuous) : DE08 (orange), Berkner (purple), Siple (yellow), South Pole 1995 (dark blue), South Pole
2001 (light blue), Dronning Maud Land (black), Dome C (green) and Vostok (brown)

• Low diffusivity at Devon Island due to melt layers

• High diffusivity in upper firn related to convection

• Very consistent diff. at intermediate depths (0.1-0.3)

• High diff. in deep firn at Vostok and Dome C (low accu. and
cold), consistent with very young ages and no plateau in δ15N
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Inverse scenario model
A “deconvolution” approach [Rommelaere et al., JGR, 1997]

• Green function = impulse response of the firn⇒ age
probabilities

ρfirn(z, tf) = G(z, t) ∗ ρatm(t) convolution

• Deconvolution :

ǫ(z) = G(z, t)ρatm(t) − ρfirn(z, tf)

ρ∗atm(t) = arg min
ρatm

[

ǫT (diag{1/σ2
mes(z)})ǫ + κ

2ρT
atmRρatm

]

• Under-constrained pb⇒ add extra information with
rugosity characteristic matrix R > 0 (i.e. d2/dt2) + κ.

• 2 parameters largely control model behavior : κ (rugosity
factor) and σ2

mes(z)

⇒ Extension to multi-site and isotopic ratios (time-varying
parameters, robust cross-validation)
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Inverse scenario for δ13C of CFC-12 at NEEM EU 2008
[Zuiderweg et al. 2012]
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Resulting firn concentrations
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Accelerating growth of HFC-227ea in the atmosphere
[Laube et. al’10]

• HFC-227ea = substitute for
ozone depleting compounds

• Firn air samples collected in
Greenland used to
reconstruct a history of
atmospheric abundance from
2000 to 2007

• Acceleration in growth rate
confirmed by upper
tropospheric air samples in
2009

• Stratospheric lifetime of 370
years calculated with samples
from high altitude aircraft and
balloons
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The isotopic record of Northern Hemisphere atmospheric
carbon monoxide since 1950, implications for the CO
budget [Wang et. al’12]

⇒ Increase untill the 70s then drop (i.e. associated with fossil
fuel : catalytic converters and diesel engines)
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Other results

• Atmospheric impacts and ice core imprints of a methane
pulse from clathrates [Bock et. al’12]

• Extreme 13C depletion of CCl2F2 in firn air samples from
NEEM, Greenland [Zuiderweg et. al’12]

• Emissions halted of the potent greenhouse gas SF5CF3
[Sturges et. al’12]

• Distributions, long term trends and emissions of four
perfluorocarbons in remote parts of the atmosphere and
firn air [Laube et. al’12]

• Reconstruction of the carbon isotopic composition of
methane over the last 50 yr based on firn air
measurements at 11 polar sites [Sapart et. al’12]

• Natural and anthropogenic variations in methane sources
over the last 2 millennia [Sapart et. al’12]
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