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"snow grain size"?

• "However, it is loosely defined from a geometrical 
point of view because snow crystals often have very 
complex shapes, leading to imprecise and 
subjective measurements." (Picard et al,AGU Adv., 
2022).

• "The classical grain size E of a snow layer is the 
average size of its grains. The size of a grain or 
particle is its greatest extension measured in 
millimetres." (Int. Snow Classification, 2009)

The grain size is precisely defined, but with limited 
physical relevance
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a snow 
sample from 
the MOSAiC 
expedition



Snow is more than "porous spheres"

Heterogenous porous media can be described by n-point correlation 
functions (Torquato, 2002). Much simplified, die ice volume fraction  is 
the first moment, the specific surface area Sv the second moment, etc. 

For a random heterogeneous material consisting of M phases, the 
general effective property Ke is the following function: 

where  indicates functionals of higher-order microstructural 
information
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Definition of the properties of porous media
Polydispersivity in the size of the particles constitutes a 
fundamental feature of the microstructure of a wide class of 
dispersions (Torquato, 2002) 
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Motivation for the Snow Grain Size Intercomparison 
Workshop 2013 and 2014

• Several methods to measure specific surface area were developed 
between ca. 2000 – 2010

• Precision and accuracy of methods contradicting

• We need to know more ... supported by IACS, MeteoFrance CEN, 
WSL – SLF

• followed by a workshop in Reading, GB. 
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setup of the workshop in Davos: lab and field
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Participating instruments
Instrument(s) Key

computer tomography MCT-MM

gas adsorption BET-AH

gas adsorption BET-MJ

gas adsorption BET-SM

nir photography NIP-TA

short wave photography SWIR-TA

translucent and nir photography TRA-MS

ASSSAP ASP-LA

SPAM-stick SPAM-PL

DUFISSS DUF-FD

IRIS IRIS-AL

ICECUBE ICE-LL

ASD FieldSpec3 Spectroradiometer ASD-RP

In-Situ Contact Spectroscopy Probe SSP-DS

SWIR SWIR-AR

snow reflectivity at 950nm INF-FW

NIR Emitting Reflectance Dome 
(NERD)/Radiation

NERD-AS

contact probe FCP-MKS
7

Instrument(s) Key
Aoki grain size AGS-TA

crystal screen, magnifying lense TRAD-CF

gridded plate, macrophotography GRI-HH

macro photography grain size MACP-RP

snow micro pen SMP-MP



Results from the workshop

• results from the snow blocks under constant temperature in the 
cold lab

• results from the wind-sheltered snow on the tennis court of St. 
Moritz
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Comparison of model-free direct methods

© Snow grain size workshop 2014, not for public release



Blocks: all instrument groups differences

© Snow grain size workshop 2014, not for public release



St. Moritz – SSASMP field homogeneity
© Snow grain size workshop 2014, not for public release



MA1

• SSA
© Snow grain size workshop 2014, not for public release



MA3 & 5

• SSA
© Snow grain size workshop 2014, not for public release



Summary of the workshop results

• the measurements on the snow blocks were in general within  a 
reasonable accuracy and variability

• the measurements in the field show large and distinct 
differences. No explanation for the obvious differences could be 
identified during the workshop.

• the workshop motivated to continue improved instrument design 
as well as further experiments to understand the instruments
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Effects of surface preparation on reflectance at 
different NIR wavelengths
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© Martin and Schneebeli, TC, 2023

• snow surface cutting causes broken bonds and (small) particles
• not for each snow type same impact
• sensitivity to small particles is near-infrared wavelength dependent



Why care about more precise measurements?

• d / dt?

• dSSA / dt?

• SSAm1 ≠ SSAm2 ≠ SSAmodel?

• no improvement without 
better methods
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looking beyond the Snow Grain Size Workshops

• Examples of complex stratigraphies

• Examples of multi-instrument campaigns: dealing with spatial 
variability and temporal evolution

• Multiple-metric instruments
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The information challenge

© Proksch & Schneebeli, ESA report, 2011



Stratigraphy and Layers at Kohnen

discriminating depositional and metamorphic layers
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High resolution 
stratigraphy

1 mm



the RhoSSA campaign at Weissfluhjoch
The RHOSSA 
campaign: multi-
resolution 
monitoring of the 
seasonal 
evolution of the 
structure and 
mechanical 
stability of an 
alpine snowpack
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MOSAiC: an instrumented snow campaign
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challenge: 4 observation 
periods
goal: no observation bias
solution:
- micro-CT
- SnowMicroPen
- NIR-Box
- surface roughness 

topography
- supplemented by classical 

density and SWE-tube 
measurement

Macfarlane, A. R., et al.: A Database of Snow on Sea Ice in the Central 
Arctic Collected during the MOSAiC expedition, Scientific Data, 10, 
https://doi.org/10.1038/s41597-023-02273-1, 2023.

https://doi.org/10.1038/s41597-023-02273-1


MOSAiC: an instrumented snow campaign
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one example: calculating 
metrics and thermal conductivity 
based on micro-CT 

© Mewes & Walter, unpublished, 2024, not for public release

Macfarlane, A. R., Löwe, et al.: Temporospatial variability of snow’s thermal 

conductivity on Arctic sea ice, The Cryosphere, 17, 5417–5434, 

https://doi.org/10.5194/tc-17-5417-2023, 2023.

https://doi.org/10.5194/tc-17-5417-2023


▪ Illumination: 2D array 
of 850nm and 940nm 
LED’s

▪ Two Cameras

▪ Reflectance Targets:           
r = 0.5 and 0.94 for 
image calibration

▪ Low-cost components

▪ SSA (2D) / density 
(1D)

▪ Potential for 2D LWC 
distribution retrieval

A multi-metric instrument: SnowImager

• Simultaneous model-based calculation of density and SSA
• By making a mosaic of the images large profile walls can be mapped



Specific Surface Area (SSA)

IceCube
SnowImager

e.g. Matzl 2006 & Montpetit 2012

𝑆𝑆𝐴 =
6

𝑂𝐸𝐷

© Mewes & Walter, unpublished, 2024, not for public release



LED panel

Cameras

Reduced reflectance within aperture

when compared to reflectance

without aperture

Gap size:

Snow Density: Novel SnowImager retrieval method

© Mewes & Walter, unpublished, 2024, not for public release



▪ Semi-empirical 
method for density 
determination

▪ Good agreement 
between 
SnowImager, μCT 
and IceCube / 
DensityCutter

▪ Millimeter resolution

▪ Sharp transitions 
between layers, 
broadened by sub-
surface photon 
scattering

SnowImager®

© Mewes & Walter, unpublished, 2024, not for public release



final thoughts: huge progress ☺

• MicroCT tomography is the gold standard to measure the information necessary to calculate all 
relevant geometrical metrics

• Full-profile measurements need multiple instruments: micro-CT, SnowMicroPen, NIR-photography, 
SnowImager, gravimetric density, point SSA

• environmental conditions often challenging for instruments and persons

• spatial variability can be measured with modern tools

• rapid developments in the past 20 years from a qualitative to a quantitative science

• Robust, cheap, precise field instrumentation in the future?

• We should speak about snow metrics (density, SSA, curvatures, anisotropy, ...) and drop "snow 
grain size" to describe the snow microstructure, as it's an incomplete metric
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appendix: results from Davos / Reading
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Combined Results

Snow Grain Size Intercomparison Workshop: 
Results

Reading, UK, August 4-5, 2014



Outline

Snow blocks

• Homogeneity of the blocks

• Instrument comparisons

Field

• Spatial and temporal homogenity

• Instrument comparisons 



snow blocks
© Snow grain size workshop 2014, not for public release



Blocks: grain size
© Snow grain size workshop 2014, not for public release



Blocks: relative grain size
© Snow grain size workshop 2014, not for public release



Block M1-3 © Snow grain size workshop 2014, not for public release



Blocks: all instrument groups © Snow grain size workshop 2014, not for public release



Blocks: scatter plots
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field Sankt Moritz - density
© Snow grain size workshop 2014, not for public release



field Sankt Moritz - SSA
© Snow grain size workshop 2014, not for public release



St. Moritz: temporal stability

© Snow grain size workshop 2014, not for public release



MA1 traditional
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MA1 density
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MA3 density
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MA1

• SSA

© Snow grain size workshop 2014, not for public release



MA3 & 5

• SSA

© Snow grain size workshop 2014, not for public release



MA1 averages (30-100 cm SD) and  lab 
std. deviation

© Snow grain size workshop 2014, not for public release



MA4 SSA

© Snow grain size workshop 2014, not for public release



MA2 SSA

© Snow grain size workshop 2014, not for public release
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