

Bayerisches Landesamt für Umwelt

What's new at the wetting front?

Christoph Mitterer

Bavarian Avalanche Warning Service

Réunion Atelier Neige – Grenoble

30 April 2015

Foto: J. Schweizer

a part of

Wet-snow avalanche Flüelapass ~16 h Planned opening of the road 17 h

Foto: J. Rocco

Reasons for bad predictability

- Formation processes are not fully understood.
- Timing is extremely short.
- Small differences in forcing (e.g. infiltration rate, snow stratigraphy) seem to be important.
- High potential for feed-back mechanisms exist.

Schneebeli (2004)

Problems stated by avalanche professionals

- No established procedure to assess wet-snow instability
 - No best-practice stability test
 - No evident meteorological parameter (air temperature?)
 - Indicator avalanches (only reliable parameter?)
- Major forecasting problem concerns the correct onset of avalanche activity.

Techel and Pielmeier (2009)

Do physically more complex model settings provide better predictions of wet-snow avalanche occurrence than simpler ones?

- Baggi and Schweizer (2009)
 - 3d-sum of positive TA, days since isothermal state, capillary barrier index (BAG)
- Peitzsch et al. (2012)
 - Mean TA, maximum TA, decrease in HS (PEI)
- Mitterer and Schweizer (2013)
 - 5d-sum of positive TA (MIT1)
 - 3d-sum of positive TA, mean TSS (MIT2)
- Mitterer et al. (2013)
 - Modelled / measured energy and mass balance (MIT3)

- Baggi and Schweizer (2009)
 - 3d-sum of positive TA, days since isothermal state, capillary barrier index (BAG)
- Peitzsch et al. (2012)
 - Mean TA, maximum TA, decrease in HS (PEI)
- Mitterer and Schweizer (2013)
 - 5d-sum of positive TA (MIT1)
 - 3d-sum of positive TA, mean TSS (MIT2)
- Mitterer et al. (2013)
 - Modelled / measured energy and mass balance (MIT3)

- Baggi and Schweizer (2009)
 - 3d-sum of positive TA, days since isothermal state, capillary barrier index (BAG)
- Peitzsch et al. (2012)
 - Mean TA, maximum TA, decrease in HS (PEI)
- Mitterer and Schweizer (2013)
 - 5d-sum of positive TA (MIT1)
 - 3d-sum of positive TA, mean TSS (MIT2)
- Mitterer et al. (2013)
 - Modelled / measured energy and mass balance (MIT3)

- Baggi and Schweizer (2009)
 - 3d-sum of positive TA, days since isothermal state, capillary barrier index (BAG)
- Peitzsch et al. (2012)
 - Mean TA, maximum TA, decrease in HS (PEI)
- Mitterer and Schweizer (2013)
 - 5d-sum of positive TA (MIT1)
 - 3d-sum of positive TA, mean TSS (MIT2)
- Mitterer et al. (2013)
 - Modelled / measured energy and mass balance (MIT3)

Energy balanced based index (LWC_{index})

- At low liquid water content (θ_w), capillary forces dominate the water flow in snow (pendular regime).
- If θ_w increases, water will start to flow downwards due to gravity (funicular regime).
- The transition from the pendular to the funicular regime was experimentally observed at a volumetric liquid water content ($\theta_{w,v}$) of 3-8%.

$$\Box \to LWC_{index} = \overline{\Theta}_{w,v} / 0.03$$

Energy balanced based index (LWC_{index})

Verification with avalanche activity data

Predictive performance of models

△ AAI≥1 + AAI≥5 × AAI≥10 ◇ AAI_{TOP10}

What's the story with the performance?

MIT2 and MIT3

- Hit 8-9 out of 10 avalanche days
- Low rate of misses, but still there
- Recognise only 2/3 of the non-avalanche day
- With both models you predict 7-9 times an avalanche day although no one occurs (high false alarm rate).

Makes the models not really suitable for operational use.

Where do the false alarms occur for MIT2?

Where do the false alarms occur for MIT3?

Introducing days since isothermal state (MIT3)

Introducing days since isothermal state (MIT3)

Conclusions

- Knowing energy input (e.g. 3d-sum of TA) and energetic state of the snowpack (e.g. TSS) provides best footing for forecasting models.
- Not all higher complexity models do necessarily provide better predictions.
- More complex models offer better options to tackle false alarms.
- False alarms are governing the performance of the forecasts.
- Forecasters are happy with the energy balance based index.

Why is measuring water so important?

upGPR: Setup in the field

Sketch: Roger Gut

30 HS Radar HS Laser SES 3 25 Two-way travel time (ns) 5.5 Snow height (m) 20 15 10 5 0.5 01 Dec 01 Jul 01 Jan 01 Apr 01 Feb 01 Mar 01 May 01 Jun Date 2011-12-01 1210 47 2011-12-01 1210-42

Schmid et al. (2014)

Tracking water in radar signal

Schmid et al. (2012)

Amount of water within snowpack

Calculating liquid water content

Schmid et al. (2014)

Conclusions

- Moving water can be tracked.
- Average liquid water content for the entire snowpack can be calculated – but not for single layers.
- Multiple reflections hint to parts of the snowpack with high liquid water content.
- Flow patterns cannot be determined.
- In the future, analysis of frequency content of the multiple reflections and other sensor setups may allow determining liquid water content for single layers.

- Thank you for your attention -