Introduction Research objectives Numerical model Idealised study Full-scale study Future work

Rheology and depth-averaged modelling of wet snow avalanches on complex topographies

> Saoirse Robin Goodwin, Guillaume Chambon & Thierry Faug

> > $\mathsf{INRAE}\text{-}\mathsf{ETNA}/\mathsf{UGA}$

robin.goodwin@inrae.fr

2022/06/09

- Introduction
- Research objectives
- Numerical model
- Idealised study
- Full-scale study
- Future work

Overview

1 Introduction

- 2 Research objectives
- 3 Numerical model

4 Idealised study

- FVM setup
- Results
- Summary
- 5 Full-scale study

6 Future work

- Research objectives
- Numerical model
- Idealised study
- Full-scale study
- Future work

Overview

1 Introduction

- 2 Research objectives
- **3** Numerical model

4 Idealised study

- FVM setup
- Results
- Summary
- 5 Full-scale study
- 6 Future work

Research objectives

INRAC UGA

- Numerical model
- Idealised study
- Full-scale study
- Future work

Background

Climate change is causing snow avalanches to become wetter

Wet snow avalanches can interact with structures; we also have channelisation, levée & ridge formation, and fingering.

- Research objectives
- Numerical model
- Idealised study
- Full-scale study
- Future work

ALT MANAGER AND ALT TO COMMENTATION OF THE PARTY OF THE P

Background

Climate change is causing snow avalanches to become wetter

 Wet snow avalanches can interact with structures; we also have channelisation, levée & ridge formation, and fingering.

Research objectives

- Numerical model
- Idealised study
- Full-scale study
- Future work

Scientific challenges

- Most models so far are for dry avalanches → we need predictive continuum numerical models for wet ones too!
 - We need to account for the effects of macroscopic cohesion, and increased density on the bulk flow dynamics of the avalanche... including when it comes to rest
 - What is the relationship between these parameters, definitions and complex topographies?

Research objectives

- Numerical model
- Idealised study
- Full-scale study
- Future work

Overview

Introduction

2 Research objectives

3 Numerical model

4 Idealised study

- FVM setup
- Results
- Summary

5 Full-scale study

6 Future work

Research objectives

- Numerical model
- Idealised study
- Full-scale study
- Future work

Objectives

Objectives

- To develop and implement a rheology accounting for macroscopic cohesion, along with a yield criterion (fluid-solid transition)
- Hence use a depth-averaged Finite Volume Method model to explore behaviour of wet avalanches, especially with regards to the arrest criteria. Quantities to vary are:
 - Macroscopic cohesion
 - The resolution of the mesh
 - Complexity of the terrain, including barrier-like features

n	Ŧ.,		~		
	u				

Research objectives

- Numerical model
- Idealised study
- Full-scale study
- Future work

Overview

Introduction

- 2 Research objectives
- 3 Numerical model

4 Idealised study

- FVM setup
- Results
- Summary
- 5 Full-scale study
- 6 Future work

Research objectives

Numerical model

Idealised study

Full-scale study

Future work

Governing equations

The incompressible depth-averaged Navier-Stokes equations for conserving mass (no entrainment)...

$$\frac{\partial h}{\partial t} + h\left(\frac{\partial U}{\partial x} + \frac{\partial V}{\partial y}\right) = 0$$

...and momentum...

$$\rho h \frac{\partial U}{\partial t} + \rho h \left(U \frac{\partial U}{\partial x} + V \frac{\partial U}{\partial y} \right) = \rho g_x h - \rho g_z h \left(\frac{\partial h}{\partial x} \right) - \tau_{zx}$$

$$\rho h \frac{\partial V}{\partial t} + \rho h \left(U \frac{\partial V}{\partial x} + V \frac{\partial V}{\partial y} \right) = \rho g_y h - \rho g_z h \left(\frac{\partial h}{\partial y} \right) - \tau_{zy}$$

where ρ is bulk density; *h* is flow depth; *U* and *V* are velocities in an orthogonal two-dimensional space; *g* is gravitational acceleration; and τ_{zx} and τ_{zy} are resisting shear stresses.

In	due	ctio	n		

Research objectives

Numerical model

Idealised study

Full-scale study

Future work

Constitutive equation for shear terms

We use a modified Voellmy model, that includes a term for the macroscopic cohesion:

$$\tau_{zx} = \left[\rho g_z h(\mu) + \rho g_z h\left(\frac{|U|^2}{\xi h}\right) + \tau_c\right] \frac{\underline{U}}{|U|}$$

Typical parameter ranges								
	Parameter	Value	Meaning					
	μ	0.15 to 0.50	Coulomb friction					
	ξ	$500 \text{ to } 2000 \text{ ms}^{-2}$	Turbulent friction					
	$ au_{c}$	0 to 300 Pa (?)	Cohesion					

Note: we really need to be aware of scale effects! E.g. ρ and τ_c are scale-dependent (and their ratio governs flow dynamics).

Research objectives

Numerical model

Idealised study

Full-scale study

Future work

Physical yielding criterion

We define $\tau_{xz, \text{ test}}$ using momentum conservation (the inertia and pressure gradient terms), assuming that the flow would instantaneously come to rest at the next timestep:

$$| au_{xz, \text{ test}}|(
ho U) < au_c +
ho g_z h \mu
ightarrow U = 0$$

This enables unambiguous identification of flowing and stopped zones.

- Introduction
- Research objectives
- Numerical model
- Idealised study
- FVM setup
- Results
- Summary
- Full-scale study
- Future work

2 Research objectives

Overview

3 Numerical model

4 Idealised study

- FVM setup
- Results
- Summary
- 5 Full-scale study
- 6 Future work

- Introduction
- Research objectives
- Numerical model
- Idealised study
- FVM setup
- Results
- Summary
- Full-scale study
- Future work

Finite Volume Grid: flat

Grid size: 40 by 20 (low-res)

30

- Introduction
- Research objectives
- Numerical model
- Idealised study
- FVM setup
- Results Summary
- Summary
- Full-scale study
- Future work

Finite Volume Grid: flat

- Introduction
- Research objectives
- Numerical model
- Idealised study
- FVM setup
- Results
- Summary
- Full-scale study
- Future work

Finite Volume Grid: random

Grid size: 40 by 20 (low-res)

Magnitude of random terrain features: < 100 mm

- Introduction
- Research objectives
- Numerical model
- Idealised study
- FVM setup
- Results
- Summary
- Full-scale study
- Future work

Finite Volume Grid: random

Magnitude of random terrain features: < 6 mm

- Introduction
- Research objectives
- Numerical model
- Idealised study
- FVM setup
- Results
- Summary
- Full-scale study
- Future work

Finite Volume Grid: complex

Grid size: 40 by 20 (low-res)

Magnitude of **complex terrain features**: < 0.5 m

- Introduction
- Research objectives
- Numerical model
- Idealised study
- FVM setup
- Results
- Summary
- Full-scale study
- Future work

Finite Volume Grid: complex

Grid size: 640 by 320 (hi-res)

Magnitude of **complex terrain features**: < 0.4 m

The proportion of "unyielded material" is much lower on the complex topography.

The higher resolution leads to a better-defined flow, especially on the **complex topography**.

The lower resolution predicts...

- A higher area covered by the deposition
- Less material passing through the obstacle

- The lower cohesion starts arrestation at the bottom
- The higher cohesion starts arrestation from the bottom

0	10	20	0	10	20	0	10	20	0	10	20
= 8.00	s		Unyield	ied = 3	35.7 %	t = 8.00)s		Unyielde	d =	59.8 %

- Introduction
- Research objectives
- Numerical model
- Idealised study
- FVM setup
- Results
- Summary
- Full-scale study
- Future work

Summary

- Even a small amount of macroscopic cohesion affects flow dynamics.
- Furthermore:
 - Lower τ_c causes flows to arrest from the bottom-up.
 - Higher τ_c causes flows to arrest from the top-down.

- Introduction
- Research objectives
- Numerical model
- Idealised study
- FVM setup
- Results
- Summary
- Full-scale study
- Future work

Summary

- An increased mesh resolution is associated with:
 - Smoother, more detailed flow bounds
 - A higher proportion of material becoming **unyielded**.
- Random noise of within ± 10 % of the cell width makes little difference to the flow dynamics.
- In constrast, superimposing even "mild" topographical complexity on mountains causes large differences on the flow dynamics, especially in terms of the arrest criterion.

- Introduction
- Research objectives
- Numerical model
- Idealised study
- Full-scale study
- Future work

Overview

Introduction

- 2 Research objectives
- **3** Numerical model

4 Idealised study

- FVM setup
- Results
- Summary

5 Full-scale study

6 Future work

- Introduction
- Research objectives
- Numerical model
- Idealised study
- Full-scale study
- Future work

Future work – full-scale

Features

- Release zone
- 2 Debris fan
- 3 Storage basin
- 4 Bourgeat dam

- Introduction
- Research objectives
- Numerical model
- Idealised study
- Full-scale study
- Future work

Future work – full-scale

Same depth-averaged modelling approach

- Bourgeat avalanche track and protection dam (Haute-Savoie, France)
- Systematic sensitivity analyses

Parameters

- Release area of about 275 000 m²
- *h*₀ = 2.0 m
- 2 m digital terrain model
- $\mu = 0.15$, $\xi = 1000 \text{ ms}^{-2}$
- $0 \le \tau_c / \rho \le 2$

- Introduction
- Research objectives
- Numerical model
- Idealised study
- Full-scale study

INRAC UGA

Future work

Future work – full-scale

Time of impact with the Bourgeat dam

$\textbf{Cohesive flow} \rightarrow \textbf{better match}$

- Voellmy flow induces a deposit which spreads over the whole storage basin
- Cohesive flow induces heteregeneous deposits with two main branches and adjacent "voids" formed

- Introduction
- Research objectives
- Numerical model
- Idealised study
- Full-scale study
- Future work

Overview

Introduction

- 2 Research objectives
- **3** Numerical model

4 Idealised study

- FVM setup
- Results
- Summary

5 Full-scale study

6 Future work

INRA@ UGA

- Introduction
- Research objectives
- Numerical model
- Idealised study
- Full-scale study
- Future work

Future work

- Compare full-3D and depth-averaged solutions, given topographical complexity is substantial. (Note though that materials can smooth out at least part of this complexity through the formation of dead zones, etc.)
- Further improvements can be made the current improved Voellmy model to attempt to separate phenomena which are currently lumped together.
- Move to unstructured meshes and massively-parallelised solvers.
- Investigate scale effects, and use the findings to help interpret full-scale analyses.

