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Introduction

Sea level change: Antarctica & Greenland contribution

Motivations: Computation of the ice discharge of Antarctica and Greenland in the
near future, thanks to simulations of polar ice sheet model.

Ice discharge:

governed by a couple of
narrow outlets (ice
streams),

closely linked to ice
velocities,

highly sensitive to basal
friction parameters,

highly sensitive to bedrock
topography

Surface ice velocities [Rignot et al. 2011] →
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Introduction

Poorly known basal parameters

Basal drag and bedrock topography are crucial to perform accurate
simulations of ice sheets.

But:

basal drag is unknown (local estimation by analysis of extracted sediment,
poorly representative lab experiments, geothermal flux impacting basal
temperature not well known)

bedrock topography is measured along tracks =⇒ up to 400-500 meters
uncertainties on central regions of Greenland / the Antarctica
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Introduction

Example: Bedmap2 [Fretwell et al. 2012]

Bedmap2 estimation
of bed topography

Estimated uncertainty
of bed topography
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Introduction

Data assimilation

Combine model equations and observa-
tions:

surface velocities,

surface elevation,

surface trends,

bedrock topography.

in order to infer basal drag and bedrock
topography
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Introduction

Outline

1 Large-scale ice sheet model

2 Data assimilation (DA)

3 First numerical results
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Large-scale ice sheet model

Where am I?

1 Large-scale ice sheet model

2 Data assimilation (DA)

3 First numerical results
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Large-scale ice sheet model

Ice dynamics processes
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Large-scale ice sheet model

Model equations: mass balance

Large time and space scales ⇒ shallow model

Example: flowline SIA+SSA model (1D + time)

Mass balance equation:

∂H

∂t
= ḃm −

∂
(
UH
)

∂x
, H|t=0 = H0, H ≥ 0

with

x latitude, t time

H(t, x) ice thickness, H0(x) initial ice thickness

U(t, x) ice velocity averaged over ice thickness:

U(t, x) =
1

H(t, x)

∫ H(t,x)

B(t,x)

u(t, z) dz

where B(t, x) is the bedrock topography

ḃm(t, x) surface mass balance rate
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Large-scale ice sheet model

Model equations: dynamics (1)

Vertically averaged ice velocity is a diagnostic variable → no partial derivative in
time involved, computed from geometry at each time step

U = Ud + Us

Ud deformation contribution, Us sliding contribution.

→ Deformation contribution:

Ud = −a1
∂S

∂x

H2

3
− a2

(
∂S

∂x

)3
H4

3
, S = B + H

with

S(t, x) ice surface elevation, B(t, x) ice bottom elevation ;

a1, a2 coefficients (may vary).
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Large-scale ice sheet model

Model equations: dynamics (2)

→ Sliding contribution:

In case of ice-streams or ice-shelves, Us solution of

∂

∂x

(
4Hη

∂Us

∂x

)
= ρgH

∂S

∂x
− τb

with:

η effective ice viscosity
τb = −βUs basal shear stress
β > 0 basal friction coefficient

else, Us = 0

β models bedrock properties: sediment, rock, rock debris, cold or melting ice,
presence of thin water layer, subglacial lake or river, water cavities...
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Data assimilation (DA)

Where am I?

1 Large-scale ice sheet model

2 Data assimilation (DA)

3 First numerical results
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Data assimilation (DA)

What is data assimilation?

Combine at best different sources of information to estimate the state of a
system:

model equations

observations, data

background, a priori information

statistics
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Data assimilation (DA)

What is data assimilation for?

Historically: initial state estimation, for weather forecasting.

Today, many other applications:

initial conditions for predictions,

calibration and validation,

observing system design, monitoring and
assessment,

reanalysis,

better understanding (model errors, data errors,
physical process interactions, parameters, etc),

etc.

And many other fields:

oceanography

glaciology,

seismology,

nuclear fusion,

medicine,

agronomy,

etc.
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Data assimilation (DA)

Framework of DA: least squares analysis

Aim: solve the inverse problem yo = H(xt) + εo , given a background estimate xf

of the true input parameters xt , where:

yo are incomplete observations, with errors εo unbiased and non trivial, with
covariance matrix R given.

xf = xt + εf , εf background errors unbiased and non trivial, with covariance
matrix Pf given

observation operator H maps the input parameters to the observation
variables (can contain complex laws, PDEs, non linear physics, . . . )

Hyp: H = H is a linear operator, εo and εf are not correlated.

→ The estimate xa of xt is searched for as a linear combination:

xa = L xf + Kyo

with the optimality criterium: unbiased estimate xa, with minimal variance tr(Pa).
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Data assimilation (DA)

Best linear unbiased estimator, or least squares analysis

1 BLUE analysis:{
xa = (I−KH) xf + Kyo = xf + K(yo–H(xf ))

K = PfHT (HPfHT + R)–1

K: gain, or weight matrix, yo–H(xf ) innovation.

2 Analysis covariance matrix: Pa = (I–KH)Pf

3 Equivalent variational optimization problem: (optimal least squares){
xa = arg minJ
J (x) = (x–xf )TB–1(x–xf ) + (yo–H(x))TR–1(yo–H(x))

J : cost function, inverse of Hessian of J at xa: Pa

Nodet et al. (Grenoble) Data assimilation in glaciology team.inria.fr/moise/maelle 16 / 25



Data assimilation (DA)

Data assimilation methods

Two types of methods:

1 Direct computation of the BLUE, and the gain matrix K.
Main algorithm: Kalman filter

−→ stochastic data assimilation.

2 Minimization of the cost function J using optimization and adjoint methods.
Main algorithm: 4D-Var

−→ variational data assimilation.
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Data assimilation (DA)

Sequential data assimilation: Kalman filter sequence

k − 2 k − 1 k t

state

b
x
f

u yo

u
y
o

u
y
o
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Data assimilation (DA)

Kalman filter

State vector pdf represented by 2 variables:

xk state estimate at time tk
(in our case, bedrock topography and ice thickness)

Pk error covariance matrix
(a measure of the estimated accuracy of the state estimate)

Two phases

Forecast: [Model free run]
Use (xak−1,P

a
k−1) to produce an estimation at current time tk thanks to

model Mk . We obtain (xfk ,P
f
k).

Analysis: [BLUE]
Update (xfk ,P

f
k) with observations yok , error covariance matrix Rk and

observation operator Hk . We obtain (xak ,P
a
k).

Initialisation with a priori information
+ Several assumptions needed for optimality details
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Data assimilation (DA)

Ensemble Kalman Filter

KF unpractical for geophysical data assimilation: P matrices too large to be
computed/stored

⇒ Use Monte-Carlo method: Ensemble Kalman Filter (EnKF) [Evensen 1994]

A small set of state vectors representative of the model
{
x(i), i = 1, . . . ,Nens

}
is

used to approximate model mean and covariances:

x ≈ x =
1

Nens

Nens∑
i=1

x(i)

P ≈ Pe =
1

Nens − 1

Nens∑
i=1

(
x(i) − x

)(
x(i) − x

)T
A small ensemble (Nens = O(100)) give usually satisfying results.

Here we use a deterministic EnKF called ETKF.
more details on ETKF
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First numerical results
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2 Data assimilation (DA)

3 First numerical results
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First numerical results

What we want: control variables

We search the actual state
of our model governed en-
tirely by B and H

Twin experiments

Simulate data thanks to the
model and do data
assimilation to retrieve the
state variables and/or
parameters you choose to
simulate data.
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First numerical results

What we have: surface observations

We observe each year dur-
ing 10 years

surface elevation
(σS = 10 m)

surface velocity
(σu = 3 m/yr)

Obs. taken at each grid point except in the centre every 2 grid points.

Noisy observations (noise in compliance with σS and σu)
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First numerical results

LETKF with inflation and localisation Nens = 10
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The end

Thank you for your attention
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Appendix
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Appendix How to build initial ensemble?

How to build initial ensemble?

In our case, well-known surface elevation S = B + H
But poor information on B and H. We use these two facts.

Assume Bback a priori information on bedrock topography.

For member (i), we compute [B(i),H(i)]:

B(i) = Bback + b(i) with b(i) ∼ N (0,CovB) with a good length scale for
space correlation.

S (i) = Sobs + s(i) with s(i) ∼ N (0, σ2
S I).

H(i) = S (i) − B(i) then run the model for 10 years and take resulting ice
thickness for H(i) (which is more physical).
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Appendix Kalman filter details
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Appendix Kalman filter details

KF and EKF hypothesis

Initial state is gaussian ∼ N (xb,B).

Dynamical model Mk is linear (KF) or can be linearized (EKF) with its
tangent linear matrix Mk (EKF).

Model errors are unbiased and gaussian ∼ N (0,Qk).

Model errors are uncorrelated in time.

Observation operators Hk are linear (KF) or can be linearized with its
tangent linear matrix Hk (EKF).

Observation errors are unbiased and gaussian ∼ N (0,Rk).

Observations errors are uncorrelated in time.

Errors of different types are independant.
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Appendix Kalman filter details

Algorithm

1 Initialisation: xf0 = xb and Pf = B.

2 Forecast step: (evolution model)

xfk+1 = Mk (xak)

Pf
k+1 = Mk Pa

k Mk
T + Qk

3 Analysis step: (BLUE analysis)

xak = xfk + Kk

(
yok −Hk

(
xfk
))

Pa
k = (I−KkHk) Pf

k

Kk = Pf
k Hk

T
(
Hk Pf

k Hk
T + Rk

)−1

equivalent to variationnal approach for KF : minimise cost function J

J (x) =
1

2

(
x− xfk

)T
Pf

k

−1 (
x− xfk

)
+

1

2
(yok −Hk(x))T Rk

−1 (yok −Hk(x))

back
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Appendix ETKF details

Where are we?

4 Appendix
How to build initial ensemble?
Kalman filter details
ETKF details
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Appendix ETKF details

The two steps of EnKF

1 Forecast step:

xf
(i)
k+1 =Mk

(
xa

(i)
k

) (
+q

(i)
k

)
, i = 1, . . . ,Nens

with q
(i)
k sampled from model error statistics (not necessary gaussian)

We assume a perfect model: q
(i)
k = 0

2 Analysis step: various EnKF formulations:

Stochastic EnKF [Burgers et al. 1998]: for each member of the
ensemble, noisy observation vector (according to observation error
statistics)
Deterministic EnKF [Bishop et al. 2000, Whitaker Hamill 2001, ...]:
observations error statistics used through the covariance matrix
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Appendix ETKF details

Ensemble Transform Kalman Filter (ETKF)

Detailled in [Hunt et al. 2007], [Harlim and Hunt 2007].

Analysis step

Build an ensemble
{
xa(i), i = 1 . . .Nens

}
such that xa is the minimizer of

J (x) =
1

2

(
x− xf

)T
Pf

e

−1 (
x− xf

)
+

1

2
(yo −H(x))T R−1 (yo −H(x))

and Pa
e ≈ inverse of Hessian of J at the minimum.
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Appendix ETKF details

Ensemble Transform Kalman Filter (ETKF)

Analysis step

Build an ensemble
{
xa(i), i = 1 . . .Nens

}
such as xa minimum of

J (x) =
1

2

(
x− xf

)T
Pf

e

−1 (
x− xf

)
+

1

2
(yo −H(x))T R−1 (yo −H(x))

and Pa
e ≈ Pa.

Attention: rank(P f
e ) ≤ Nens − 1 by construction so P f

e not invertible.
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Appendix ETKF details

Hypotheses

Transform Filter

Assume x = xf + Xfw and minimise J (xf + Xfw)

w ∈ RNens

Xf matrix whose ith column is xf
(i) − xf

Add a term to solve non unique minimum problem

Linear approximation for observation operator

H
(
xf + Xfw

)
≈ yf + Yfw

with

yf
(i)

= H
(
xf

(i)
)

yf =
1

N

Nens∑
i=1

yf
(i)

matrix Yf whose ith column is yf
(i) − yf

Nodet et al. (Grenoble) Data assimilation in glaciology team.inria.fr/moise/maelle 36 / 25



Appendix ETKF details

Minimisation of new cost function

Finally, we search to minimise a quadratic cost function

J̃ ∗(w) =
N − 1

2
wTw +

1

2

(
yo − yf − Yfw

)T
R−1

(
yo − yf − Yfw

)
We have a direct computation of:

minimum of J̃ ∗

wa = P̃a Yf TR−1
(
yo − yf

)
associated error covariance matrix

(
= Hess

(
J̃ ∗(wa)

)−1
)

P̃a =
(

(Nens − 1) INens + Yf TR−1Yf
)−1

symetric square root matrix

Wa =
(

(Nens − 1)P̃a
)1/2
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Appendix ETKF details

ETKF analysis step

Analysis ensemble
{
xa(i), i = 1 . . .Nens

}
is defined as

xa = xf + Xfwa (mean)

Xa = XfWa (anomalies matrix)

xa(i) = xa + Xa
i (with Xa

i ith column of Xa)

Pa
e = Xf P̃aXf T

back
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