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Introduction

Sea level change: Antarctica & Greenland contribution

Motivations: Computation of the ice discharge of Antarctica and Greenland in the
near future, thanks to simulations of polar ice sheet model.

Ice discharge: sty magnius [
& T

a5 10 w0 fo0 O

@ governed by a couple of
narrow outlets (ice
streams),

@ closely linked to ice
velocities,

@ highly sensitive to basal
friction parameters,

@ highly sensitive to bedrock
topography

Surface ice velocities [Rignot et al. 2011] — et s
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Introduction

Poorly known basal parameters

Basal drag and bedrock topography are crucial to perform accurate
simulations of ice sheets.

But:

@ basal drag is unknown (local estimation by analysis of extracted sediment,
poorly representative lab experiments, geothermal flux impacting basal
temperature not well known)

@ bedrock topography is measured along tracks = up to 400-500 meters
uncertainties on central regions of Greenland / the Antarctica
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Introduction

Example: Bedmap2 [Fretwell et al. 2012]

Bed elevation (m asl)
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<2800

Bedmap2 estimation Estimated uncertainty
of bed topography of bed topography
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Data assimilation

Combine model equations and observa-
tions:

@ surface velocities,

. .
oo/ @ surface elevation,

@ surface trends,
@ bedrock topography.

in order to infer basal drag and bedrock
topography
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Introduction

e Large-scale ice sheet model

© Data assimilation (DA)

e First numerical results
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Large-scale ice sheet model

e Large-scale ice sheet model
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Large-scale ice sheet model

Ice dynamics processes

2000 km
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Large-scale ice sheet model

Model equations: mass balance

Large time and space scales = shallow model
Example: flowline SIA+SSA model (1D + time)

Mass balance equation:

OH . 0(UH)
— = —_— — = >
i bum 5 Hl=o=Ho, H=0

with
@ x latitude, t time
@ H(t,x) ice thickness, Ho(x) initial ice thickness
@ U(t, x) ice velocity averaged over ice thickness:

e = s [ e 2)d

t,X) = ————~ u(t,z)dz
H(t, x) Ja(e.x

where B(t, x) is the bedrock topography

® by(t,x) surface mass balance rate e
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Large-scale ice sheet model

Model equations: dynamics (1)

Vertically averaged ice velocity is a diagnostic variable — no partial derivative in
time involved, computed from geometry at each time step

U= Ug + Us
Uy deformation contribution, Us sliding contribution.

— Deformation contribution:

9S H? 9s\> H*
— a2 L (2) —B+H
Uq N3 @ <8x> S +
with

@ 5(t,x) ice surface elevation, B(t, x) ice bottom elevation ;

@ ap, ap coefficients (may vary).
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Model equations: dynamics (2)

— Sliding contribution:

@ In case of ice-streams or ice-shelves, Us solution of

0 <4H77%> =pgH— — 71
Ox

Ox Ox

with:

o 1 effective ice viscosity
o 7, = —[3Us basal shear stress
e 3 > 0 basal friction coefficient

@ else, Us =0

[ models bedrock properties: sediment, rock, rock debris, cold or melting ice,
presence of thin water layer, subglacial lake or river, water cavities...
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Data assimilation (DA)

© Data assimilation (DA)
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Data assimilation (DA)

What is data assimilation?

Combine at best different sources of information to estimate the state of a
system:

@ model equations
@ observations, data
@ background, a priori information

@ statistics
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Data assimilation (DA)

What is data assimilation for?

Historically: initial state estimation, for weather forecasting.

Today, many other applications: And
@ initial conditions for predictions, °
@ calibration and validation, °
@ observing system design, monitoring and °

assessment,
°
@ reanalysis,
°
@ better understanding (model errors, data errors,
physical process interactions, parameters, etc), °
@ etc. °

many other fields:
oceanography
glaciology,
seismology,
nuclear fusion,
medicine,
agronomy,

etc.
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Framework of DA: least squares analysis

Aim: solve the inverse problem y° = H(x!) + ¢°, given a background estimate x"
of the true input parameters x*, where:

@ y° are incomplete observations, with errors €° unbiased and non trivial, with
covariance matrix R given.

o x’ =x' 4 €', ¢f background errors unbiased and non trivial, with covariance
matrix P’ given

@ observation operator H maps the input parameters to the observation
variables (can contain complex laws, PDEs, non linear physics, ...)

Hyp: H = H is a linear operator, €° and €’ are not correlated.
— The estimate x? of x* is searched for as a linear combination:
a_ fo + Kyo

with the optimality criterium: unbiased estimate x?, with minimal varlan,g;g tr(PPa)

Joseph Four
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Data assimilation (DA)

Best linear unbiased estimator, or least squares analysis

© BLUE analysis:

x? = (I — KH)x" + Ky° = x" + K(y°-H(x"))
K=PH"(HP'HT + R)!

K: gain, or weight matrix, y°~H(x") innovation.
@ Analysis covariance matrix: P? = (I-KH)P

© Equivalent variational optimization problem: (optimal least squares)

{ x? = arg min J
J(x) = (xx") "B} (x-x") + (y°>-H(x)) "R} (y°~H(x))

J: cost function, inverse of Hessian of J at x?: P?
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Data assimilation (DA)

Data assimilation methods

Two types of methods:

@ Direct computation of the BLUE, and the gain matrix K.
Main algorithm: Kalman filter
— stochastic data assimilation.

@ Minimization of the cost function 7 using optimization and adjoint methods.
Main algorithm: 4D-Var
— variational data assimilation.
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Sequential data assimilation: Kalman filter sequence

state

<

<»
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Data assimilation (DA)

Sequential data assimilation: Kalman filter sequence

<
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Data assimilation (DA)

Sequential data assimilation: Kalman filter sequence
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Sequential data assimilation: Kalman filter sequence

<»
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Data assimilation (DA)

Sequential data assimilation: Kalman filter sequence

<»
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Data assimilation (DA)

Sequential data assimilation: Kalman filter sequence

boe — -

<
)
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Data assimilation (DA)

Kalman filter

State vector pdf represented by 2 variables:

@ X, state estimate at time t,
(in our case, bedrock topography and ice thickness)

@ Py error covariance matrix
(a measure of the estimated accuracy of the state estimate)

Two phases

o Forecast: [Model free run]
Use (x3_;,P?_;) to produce an estimation at current time t; thanks to
model M. We obtain (xf, P%).

@ Analysis: [BLUE]
Update (xf, P%) with observations y¢, error covariance matrix Ry and
observation operator 7. We obtain (x7, P%).

Initialisation with a priori information
+ Several assumptions needed for optimality ©* details R
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Data assimilation (DA)

Ensemble Kalman Filter

KF unpractical for geophysical data assimilation: P matrices too large to be
computed /stored

= Use Monte-Carlo method: Ensemble Kalman Filter (EnKF) [Evensen 1994]

A small set of state vectors representative of the model {x(),i =1,..., Neys} is
used to approximate model mean and covariances:

P~ Po 1 N0 R (x5
~ Pe= g > (0 %) (X0 %)

A small ensemble (Nens = O(100)) give usually satisfying results.

Here we use a deterministic EnKF called ETKF.
» more details on ETKF

Nodet et al. (Grenoble) Data assimilation in glaciology team.inria.fr/moise/maelle 20 / 25



First numerical results

e First numerical results
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First numerical results

What we want: control variables

We search the actual state
of our model governed en-
tirely by B and H

Simulate data thanks to the
model and do data
assimilation to retrieve the
state variables and/or
parameters you choose to

simulate data.
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What we have: surface observations

We observe each year dur- ———
ing 10 years
. T
@ surface elevation H
(05 =10 m) <

@ surface velocity
(ou =3 m/yr) ‘ ‘ ‘ ‘ ‘

|
20 o w0 W o T
distance from the pole (in km)

Obs. taken at each grid point except in the centre every 2 grid points.
Noisy observations (noise in compliance with os and )
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LETKF with inflation and localisation Ng,s = 10

Results for bedrock topography at final time t =10 years Absolute deviation from truth at final time t = 10 years
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Thank you for your attention
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Appendix

o Appendix
@ How to build initial ensemble?
@ Kalman filter details
@ ETKF details
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Appendix How to build initial ensemble?

o Appendix
@ How to build initial ensemble?
Kalman filter details

ETKF details
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Appendix How to build initial ensemble?

How to build initial ensemble?

In our case, well-known surface elevation S = B+ H
But poor information on B and H. We use these two facts.

Assume Bb2 3 priori information on bedrock topography.
For member (i), we compute [B(), H]:

o B() = Bback 4 p() with b() ~ N(0,Covg) with a good length scale for
space correlation.

o S0) = §obs s with s() ~ N(0, o2I).
o H = s — B() then run the model for 10 years and take resulting ice

thickness for H(") (which is more physical).

Université f e
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Appendix

o Appendix
How to build initial ensemble?
@ Kalman filter details
ETKF details
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KF and EKF hypothesis

@ Initial state is gaussian ~ A/ (x?, B).

@ Dynamical model M is linear (KF) or can be linearized (EKF) with its
tangent linear matrix My (EKF).

@ Model errors are unbiased and gaussian ~ N(0, Qx).
@ Model errors are uncorrelated in time.

@ Observation operators Hy are linear (KF) or can be linearized with its
tangent linear matrix H, (EKF).

@ Observation errors are unbiased and gaussian ~ A (0, Ry).
@ Observations errors are uncorrelated in time.

@ Errors of different types are independant.
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Algorithm

@ Initialisation: x§ = x? and Pf = B.

@ Forecast step: (evolution model)

X£+1 = Mk(xi)
Pler = McPiM +Qc
© Analysis step: (BLUE analysis)
= K (v~ e ()
P2 = (I—KyHy) P
T T -t
Ke = P{H, (HkP,in +Rk)

equivalent to variationnal approach for KF : minimise cost function J

T0) =5 (=) PL (= xf) 5 (5 — Hel) R (5% — Halx)
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» back
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Appendix ETKF details

o Appendix
How to build initial ensemble?
Kalman filter details

@ ETKF details
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The two steps of EnKF

@ Forecast step:
xFD g, (2D +q) =1 N
k+1 k k q, 51 5oy Vens
with qs(i) sampled from model error statistics (not necessary gaussian)

We assume a perfect model: qf(i) =0

© Analysis step: various EnKF formulations:
o Stochastic EnKF [Burgers et al. 1998]: for each member of the
ensemble, noisy observation vector (according to observation error

statistics)
o Deterministic EnKF [Bishop et al. 2000, Whitaker Hamill 2001, ...]:

observations error statistics used through the covariance matrix

Nodet et al. (Grenoble) Data assimilation in glaciology team.inria.fr/moise/maelle 33 /25



Appendix ETKF details

Detailled in [Hunt et al. 2007], [Harlim and Hunt 2007].
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Appendix ETKF details

Attention: rank(Pf) < Nens — 1 by construction so Pf not invertible.

e e
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Hypotheses

@ Transform Filter
Assume x = x’ 4+ X w and minimise J(x" + Xw)
e WE RNens

. . . N _
o X' matrix whose ith column is xf() —x"

@ Add a term to solve non unique minimum problem

@ Linear approximation for observation operator

H(x +X'w) ~ ¥ +Y'w
with
(0 £() f 1 Mo £(0)
[AY i of _ 1 f
yO=u(x)  y =< iz_;y
matrix Y’ whose ith column is y™” — g

Nodet et al. (Grenoble) Data assimilation in glaciology team.inria.fr/moise/maelle 36 / 25



Minimisation of new cost function

Finally, we search to minimise a quadratic cost function

JT*(w) = NT_wTw + % (v =5 = Y'w) Ry — 5" — Y'w)

We have a direct computation of:

@ minimum of j*
W — ﬁa YfTR71 (yo 77)

- -1
@ associated error covariance matrix (: Hess (J*(Wa)> )

~ -1
P — ((Nens 1)y, + YfTR—lvf)

ens

@ symetric square root matrix

_\1/2
W? = ((Ne”s B 1)P3) e [
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ETKF analysis step

Analysis ensemble {xa(i), i=1... Ne,,s} is defined as

o x* =x" + X'W? (mean)
@ X2 = X"W? (anomalies matrix)

o x?() = %2 4 X2 (with X2 ith column of X?)

o P2 = XPaxf"

» back
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