Assmilation de données géomagnétiques et dynamique dans le noyau terrestre

Nicolas Gillet<sup>1</sup>, Dominique Jault<sup>1</sup>, Nathanaël Schaeffer<sup>1</sup>, Alex Fournier<sup>2</sup>, Julien Aubert<sup>2</sup>, Chris Finlay<sup>3</sup>

> <sup>1</sup>ISTerre/CNRS/Univ. Grenoble <sup>2</sup>IPG Paris, <sup>3</sup>DTU Space, Copenhagen

Rencontres OSUG-LJK, Maison J. Kuntzmann, 18 mars 2013



(ロ) (部) (注) (注)

#### Outlines

données géophysiques

modèlisations

pistes de réflexions

# imagerie du champ magnétique à la surface du noyau

- mesure magnétique

   (r ≥ a le rayon terrestre) :
   principale contrainte sur la dynamique du noyau
- manteau isolant : champ magnétique potentiel  $\mathbf{B} = -\nabla V$
- $\Rightarrow$  contrainte sur le champ magnétique  $B_r(t)$  à la surface du noyau (r = c)
  - lien avec l'écoulement à la surface du noyau via équation d'induction



courtesy : A. Fournier

$$\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times (\mathbf{u} \times \mathbf{B}) + \eta \nabla^2 \mathbf{B}$$

# observatoires magnétiques (depuis 1840)

- couverture non globale
- ⇒ séparation imparfaite entre sources internes (noyau, induction) et externes (magnéto et ionosphère)





 dB/dt continu, non dérivable aux périodes interannuelles à pluri-décennales (secousses magnétiques)

ightarrow spectre temporel  $S(\omega)\propto ar{\omega}^{-4}$ 

réseau INTERMAGNET

# enregistrements archéomagnétiques (derniers 10,000 ans)



Donadini et al, 2009



 B(t) continu, non dérivable aux périodes centennales à pluri-millénaires (secousses archéomagnétiques)

 $\Rightarrow \text{ spectre temporel } S(\omega) \propto \omega^{-1}$ 

# mesures satellitaires

orbite basse (200 à 700 km), polaire

- en continu depuis 1999 (Oersted, Champ)
- couverture globale = séparation des sources internes/externes... mais :
- perturbations mal modélisées à hautes latitudes
- orbite polaire  $\Rightarrow$  dérive lente / axe Soleil-Terre
- $\Rightarrow\,$  la surface terrestre n'est revisitée sous les mêmes conditions que tous les quelques mois
- $\Rightarrow \text{ \acute{e}chantillonnage du noyau (qq mois au mieux)} \\ \neq \text{\acute{e}chantillonnage des mesures (1 seconde)}$ 
  - Swarm : lancement de 3 satellites prévu en septembre 2013
- $\Rightarrow$  opportunité d'une meilleure séparation interne/externe

#### quelques temps caractéristiques pour le noyau

- propagation d'une onde inertielle
- propagation d'une onde d'Alfvén
- retournement d'un tourbillon
- temps de diffusion magnétique
- temps de diffusion visqueux

 $\Rightarrow$  pour  $\ell \simeq c$  la taille du noyau, on a

$$T_{\nu} \gg T_{\eta} \gg T_U \gg T_A \gg T_{\Omega}$$

$$\begin{split} & \widehat{f}_{\Omega}(\ell) = c/\ell\Omega & 1 \text{ jour} \\ & B(\ell) = c\sqrt{\rho\mu}/B & 4 \text{ ans} \\ & \overline{f}_{U}(\ell) = \ell/U(\ell) & 300 \text{ ans} \\ & \overline{f}_{\eta}(\ell) = \ell^{2}/\eta & 100,000 \text{ ans} \\ & \overline{f}_{\nu}(\ell) = \ell^{2}/\nu & 10^{11} \text{ ans} \end{split}$$

### invariance axiale (quasi-géostrophie) et gyre eccentré

- calculs 3D : (u∇) u négligeable et champ imposé (T<sub>A</sub> ≫ T<sub>Ω</sub>)
- QG pour  $\ell > 50$  km



Gillet, Schaeffer & Jault, 2011



 inversions cinématiques QG : circulation anticyclonique
 Pais & Jault, 2008

# résultats d'assimilation séquentielle 3D

- covariances de l'état du noyau
   (B, u, Θ) calculatées par intégration d'un modèle 3D de géodynamo
  - B eq. d'induction
  - ⊖ eq. de la chaleur
  - u eq. de quantité de mouvement
- filtre de Kalman de l'état du noyau à partir de données B<sub>r</sub>(t) en r = c
- $\Rightarrow$  écoulements symmétriques
  - gyre absent (comme demandé par l'a priori)



Aubert & Fournier, 2011



### gyre anticyclonique : moteur thermique ou magnétique?

 filtre de Kalman + calculs geodynamo 3D + moteur thermique non isotrope



Aubert, 2012

• situation des calculs 3D :

 $T_{\nu}\simeq T_{\eta}\gg T_U\simeq T_A\gg T_{\Omega}$ 

- forces magnétiques  $(\nabla \times \mathbf{B}) \times \mathbf{B}$  sous-estimées
- rôle de  $(\mathbf{u} 
  abla)\mathbf{u}$  sur-valorisé
- .. le bon régime asymptotique?
- alternative : support magnétique du gyre  $\Rightarrow B \ge 3 \text{ mT}$

#### base de données synthétique pour l'assimilation ANR AVS-geomag, IPGP/ISTerre



pas à pas vers le noyau...

- diminuer  $P_m = T_\eta / T_\nu$
- diminuer  $A = T_A/T_U$

calculs N. Schaeffer objectif : validation d'algorithmes d'assimilation géomag

# un modèle quasi-géostrophique du noyau

Canet, Fournier & Jault, 2009

- pari : ignorer la thermique
- QG : réduit le problème à 2D
- configuration Earth-like :  $T_D \gg T_U \gg T_A \gg T_\Omega$  $\Rightarrow$  dynamique  $\frac{\partial \mathbf{u}}{\partial t}$  supportée par les forces
- magnétiques  $(\nabla \times \mathbf{B}) \times \mathbf{B}$  et esclave de  $\frac{\partial \mathbf{B}}{\partial t}$  dans le noyau
  - sous-espace des ondes de torsion : vitesse de phase  $V_A(s) \propto r.m.s.(B_s)$ sur les cylindres géostrophiques





# assimilation variationnelle 1D : les ondes de torsions

Gillet, Jault, Canet & Fournier, 2010



 première image du champ dans le noyau



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

# l'opportunité Swarm

- meilleure séparation des sources externes/internes
  - quitter l'approximation du manteau isolant : modèles complets noyau+manteau+externe
  - ... caractériser le filtre magnétique passe-bas du manteau profond, par couplage entre induction dans le manteau et dynamique dans le noyau
- physique rapide : ondes de Rossby
  - celles de plus grande taille sont les plus rapides
  - dans le cas d'un manteau faiblement conducteur : existe-t-il une fenêtre entre nos myopies spatiale (croûte magnétisée) et temporelle (variations externes)?
  - selection des formes d'ondes par la stratification : confirmation de la couche moins dense suspectée par l'analyse des ondes sismiques traversant la partie supérieure du noyau ? Helffrich & Kaneshima, 2010

### compréhension physique des spectres temporels observés?

 efforts de caractérisation des spectres temporels des différentes sources aux différentes périodes :

pente -2 pour  $T = \mathcal{O}(300)$  ans



 complément stochastique des modèles déterministes :
 e.g. process AR d'ordre n

$$\sum_{n} A_{n} \frac{\partial^{n} X}{\partial t^{n}} = w(t)$$

... spectre de pente -2n

 modélisation par effets sous-maille à hautes fréquences et/ou petites échelles ?

# développements des algorithmes d'assimilation

- emboitement des époques pour le calcul de l'ébauche : satellites ∈ observatoires ∈ historiques ∈ archéomag
- relativement peu d'observations vu la complexité de la dynamique
- ⇒ par nécessité : problèmes de petite taille
   ... opportunité pour la validation de développements méthodologiques
- e.g. prise en compte des correlations temporelles importantes dans les erreurs de modélisation

- inversion de quantités bornées (par ex : quantités magnétiques  $B^2$  intégrées le long de l'axe de rotation pour le modèle QG)