

Evaluation et suivi des apports de nitrate par dépôt atmosphérique dans une prairie alpine

JC Clément (LECA), R. Jacob (M2ECE), N. Caillon et J. Savarino (LGGE)

La Déposition atmosphérique (N₂, N_{ox}, NH₃, HNO₃, PAN, HONO, N₂O, N₂O₅)

Des retombées atmosphériques d'N

Les écosystèmes éloignés des sources sont touchés

180E

Plus localement...

Col du Dôme

Evolution [NO3] dans une carotte de glace

Les prairies subalpines...

Dynamique de l'enneigement et des variables édapho-climatiques

Azote dans la neige – Formes, Concentrations et Quantités

Concentrations cohérentes¹

- N-NH₄ 0.02 0.09 mg.L⁻¹ (~27%)
- N-NO₃ 0.02 0.19 mg.L⁻¹ (~31%)
- **N-DON** 0.00 2.35 mg.L⁻¹ (~42%)

⇒ Manteau neigeux = Piège à particules²

Origines ? ⇒ Fertilisation, Trafic routier, Industries et Centres Urbains (Pô et Grenoble)³

- 2. Burns 2004 Environmental Pollution
- 3. Schmitt et al. 2005 Atmospheric Environment
- Robson et al. 2007 Soil Biology & Biochemistry 4.
- 5. Buckeridge & Grogan 2010 Biogeochemistry

Azote dans la neige - Quels devenirs ?

5. Filippa et al. 2009 Biogeochemistry

Evaluation et suivi des apports de nitrate par dépôt atmosphérique dans une prairie alpine

- Contribution des dépôts atmosphériques de nitrate (NO₃) dans la neige, les sols, les eaux de rivière ?
 - Signal isotopique ?
 - Marqueur de la fonte des neiges ?
 - Sensibilité à un stress hydrique ?
 - (Sensibilité au couvert végétal ?)

Cycle de Leighton (adapté de J.Erbland, 2011)

O de NO_{3atm} issus essentiellement de O₃ $\rightarrow \Delta^{17}$ O semblable à celui de O₃

• • Isotopie

• Mesure des isotopes dans les différents réservoirs terrestres :

```
δ<sup>17</sup>O ≈ 0.5 x δ<sup>18</sup>O
```


Diagramme isotopes du nitrate

Kendall, C. 1998. Tracing nitrogen sources and cycling in catchments. in Isotope Tracers in Catchment Hydrology. Elsevier, Amsterdam.

••• Isotopie

Dépôts atmosphériques de NO_{3 atm}

• • Isotopie Dépôts atmosphériques de NO_{3 atm} 26 ‰ (été) < ∆¹⁷O < 30 ‰ (hiver) (Savarino et al.2013) **δ**¹⁵**N**-NO₃ = -6,5‰ ±2,8 (cette étude) NO₃ Sol Nitrification $\Delta^{17}\mathbf{O}$ Nitritation: $\varepsilon^{15}N = -12$ ‰ $\delta^{15}N$ Nitratation: $\varepsilon^{15}N = +14 a + 38 \%$ (Casciotti et al. 2009) fractionnement isotopique 3 = **Nitrification:** $\epsilon^{15}N > 0$ instantané lié à un processus $\Delta^{17}O = O$ ≠ \rightarrow augmentation de $\delta^{15}N$ -NO₃ $\boldsymbol{\delta}$ = valeur numérique du fractionnement et dilution de Δ^{17} O du signal

atmo.

• • Isotopie Dépôts atmosphériques de NO_{3 atm} 26 ‰ (été) < Δ^{17} O < 30 ‰ (hiver) (Savarino et al.2013) **δ**¹⁵**N**-NO₃ = -6,5‰ ±2,8 (cette étude) NO₃ Sol Nitrification **Dénitrification** $\Delta^{17}\mathbf{O}$ $\epsilon^{15}N > 0$ $\delta^{15}N$ $13 \% < \epsilon^{15} N < 30 \%$ (Casciotti et al. 2009) Δ^{17} O = O (Casciotti et al. 2009) Pas d'impact sur Δ^{17} O \rightarrow augmentation de δ^{15} N- \rightarrow augmentation de $\delta^{15}N$ et aucun NO₃ et dilution de Δ^{17} O du **impact** sur Δ^{17} **O** du signal atmo. signal atmo. Aucun impact sur δ^{15} N-NO₃ et sur Δ^{17} O Lixiviat

•••• Matériel et méthode

- Site
- Echantillonnage
- Ligne d'analyse

Col du Lautaret:

- Villar d'Arène, Hautes-Alpes
- 2050 m d'altitude
- BV de la Romanche
- Site étudié depuis 10 ans par le

• Températures moy: -7,4°C l'hiver et

19,5°C l'été • Précipitations moy: 1300 mm/an

(Photo R. Jacob)

•••• Matériel et méthode

Site

- Echantillonnage
 - Ligne d'analyse

• Manteau neigeux : 25/02/2014 et 16/04/2014

(R. Jacob, N. Caillon, LGGE)

• Eau de rivière : entre le 16 avril et le 24 mai 2014

(R. Jacob, LGGE; F. Delbart, SAJF)

- Echantillons souterrains : 9 septembre 2013 (L. Bernard, LECA)
 - **Extraits de sol** au K₂SO₄
 - > Lixiviats par entrainement à l'arrosage
 - Prairies contrôles vs. Prairies sécheresse

Matériel et méthode Site Echantillonnage Ligne d'analyse

CI = chromatographie ioniqueFIA (Flow Injection Analysis) = analyse colorimétrique à flux continu

Concentrations

FIA (Flow Injection Analysis) = analyse colorimétrique à flux continu

Concentrations

•••• Matériel et méthode

- Site
- Echantillonnage
- > Ligne d'analyse

CI = chromatographie ionique

FIA (Flow Injection Analysis) = analyse colorimétrique à flux continu

Concentrations

IRMS (Isotope Ratio Mass Spectrometer) = permet l'analyse des rapports isotopiques par

spectrométrie de masse

Neige : **28‰** \pm 0,9 \rightarrow Signal atmo.

Extrait de sol (K_2SO_4) : 2‰ ±0,5 soit 7% ±2 du signal atmo.

Lixiviats de sol (H_20) : 3‰ ±0,5 soit 10% ±2 du signal atmo.

Rivière : avant fonte: 1‰ ±0,4 soit 4% ±2 du signal atmo.

fonte : 5‰ ±0,4 soit 18% ±2 du signal atmo.

 \rightarrow NO_{3⁻atm} facilement emportés : circulant dans la macroporosité (Lixiviats) *vs.* NO_{3⁻} produits dans la microporosité du sol par nitrification (Extraits sol)

22

Lixiviats, Rivière avant fonte, Extraits ≥ 0

Rivière pendant fonte ≤ 0

 \rightarrow Impact des Processus biologiques dans les sols (Nit. Et Denit.)

Evolution temporelle: $\Delta^{17}O \oslash \rightarrow$ signal atmo \oslash avec la fonte

 δ^{15} N \triangleleft le 07/05 \rightarrow reprise de l'activité microbienne

puis à la fonte -> dilution du signal

Signal atmo **dilué** le long de l'écoulement

Fonte: moment clé pour les sols et les eaux

Evolution temporelle: $\Delta^{17}O \oslash \rightarrow$ signal atmo \oslash avec la fonte

 δ^{15} N \triangleleft le 07/05 \rightarrow reprise de l'activité microbienne

puis à la fonte \rightarrow **dilution** du signal

$$\begin{array}{|c|c|c|c|} & \blacktriangleright & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet \\$$

• Δ^{17} O versus δ^{15} N

 \triangleright Neige : δ¹⁵N-NO₃ = -6.5‰ ±2.8 et Δ¹⁷O = 28‰ ±0.9

• Δ^{17} O versus δ^{15} N

> Neige : δ^{15} N-NO₃ = -6.5‰ ±2.8 et Δ^{17} O = 28‰ ±0.9

> Eau de fonte (24/05) : mélange de neige et d'eau de sol

• Δ^{17} O versus δ^{15} N

Rivière avant fonte (07/05): pic de δ^{15} N-NO₃ due une dénitrification flash dans les sols

• Δ^{17} O versus δ^{15} N

> Entre la **Neige** et le **Sol** :

- > dilution de Δ^{17} O d'un facteur 14
- > Augmentation $\delta^{15}N$: Nitrification = source de NO₃ 14 fois plus grande que source atmo

• Δ^{17} O versus δ^{15} N

 \succ Extraits: δ^{15} N plus fort après sécheresse mais faible variation de Δ^{17} O

→ processus majoritaire: pulse de dénitrification à la reprise de l'arrosage

• Δ^{17} O versus δ^{15} N

▶ Sécheresse : Δ^{17} O \bigtriangleup pour les Extraits et \bigtriangledown pour les Lixiviats ???

- \rightarrow NO_{3 atm} moins bien incorporés dans la microporosité sous stress hydrique
- \rightarrow et donc plus facilement entrainés à la reprise de l'arrosage
- ightarrow La diminution des précipitations pourrait conduire à une diminution de la

« fixation » de NO_{3 atm} dans les sols malgré l'augmentation des dépôts.

• Signal des $NO_{3^{-}atm}$ confirmé $\delta^{15}N-NO_{3} = -6.5\% \pm 2.8$ et $\Delta^{17}O = 28\% \pm 0.9$

- Signal Δ^{17} O des NO_{3 atm} traçable dans les sols et les rivières
- Signaux Δ^{17} **O** et δ^{15} **N** marqueurs de processus:

- **biologiques** pour le $\delta^{15}N$: nitrification et dénitrification variables selon conditions externes (humidité, C labile, Eh...).

- **physiques (dilution)** pour le Δ^{17} O : stress hydrique impacte le temps de résidence du NO_{3 atm} dans les sols.

 Couplage activités bactéries/temps de vie du NO_{3⁻atm}: disponibilité de l'N dans les sols et élimination par lixiviation ou ruissellement vers les eaux de surface.

Conclusion et perspectives

- Problème technique avec extractions des sols : matrice K_2SO_4 précipite aux changements de T° \rightarrow risque de fractionnement.
 - Et aucun résultat lors de l'étude des ions NH₄

Perspectives:

- Poursuite de l'étude : cours d'eau, retrait précoce du manteau neigeux, fertilisation, fauche
- Relier le signal aux variations saisonnières et au land-cover
- Indice de saturation en azote du sol

