

Turbulence parameterization in Météo-France NWP models and challenges of high resolution modelling

Léo Rogel (MF-CNRM)

December 5th, 2024

Non-hydrostatic NWP model (Seity et al 2011)

- Compressible Euler equation system
- Semi-implicit, semi-lagrangian dynamics
- Large timestep (Dt=50s)
- Lateral BC forcing from ARPEGE/IFS global model

- Operational horizontal resolution 1.3km
 - Next configurations will target hectometer grid scales (750m,500m)^{40*N}

Operational AROME France domain

How do we parameterize local mixing fluxes for NWP ?

- Cuxart et al (2000) 1D turbulence scheme (used in operations at MF)
- New challenges at hectometric resolutions
- LES study of stratified layers at Upper Troposphere-Lower Stratosphere

- At operational resolutions, turbulence is assumed to be mostly subgrid
- for mesoscale forecasts, grid resolution is assumed :
 - sufficient on the vertical (dz~10-100m) for various BL regimes description
 - but relatively coarse on the horizontal (dx~1km → single-column physics)
- Scheme constrained in time and memory consumption
 → simplified approach
- It must allow very large time steps \rightarrow implicit scheme

- Turbulence entirely subgrid \rightarrow RANS* formalism
- Fluctuations derived from the inviscid anelastic equation system
- Fluxes derived from the 2nd order turbulent moments (SOTMs) simplification (Sommeria 1976, Redelsperger and Sommeria 1981):

$$\overline{u_i'u_j'} = \frac{2}{3}e\delta_{ij} - K_u\left(\frac{\partial\overline{u_i}}{\partial x_j} + \frac{\partial\overline{u_j}}{\partial x_i} - \frac{2}{3}\frac{\partial\overline{u_k}}{\partial x_k}\right)$$
$$\overline{u_i'\phi'} = -K_\phi\frac{\partial\overline{\phi}}{\partial x_i}$$

- Exchange coefficient is determined from 2 quantities:

$$K_{\psi} = C_{\psi} L \sqrt{e}$$

e : turbulent kinetic energy (TKE)L : diagnostic mixing length scale

*Reynolds Averaged Navier Stokes Léo Rogel

OSUG turbulence workshop

CBR parameterization : 1D TKE equation

- Cuxart et al. (2000) scheme implemented in Méso-NH and AROME
- 1D formulation with TKE equation :

CBR parameterization : 1D TKE equation

- Cuxart et al. (2000) scheme implemented in Méso-NH and AROME
- 1D formulation with TKE equation :

K-gradient formulation for fluxes gives :

$$\overline{u'w'} = -\frac{4}{15} \frac{L}{C_m} e^{1/2} \frac{\partial \overline{u}}{\partial z}$$
$$\overline{v'w'} = -\frac{4}{15} \frac{L}{C_m} e^{1/2} \frac{\partial \overline{v}}{\partial z}$$
$$\overline{w'\theta'} = -\frac{2}{3} \frac{L}{C_s} e^{1/2} \frac{\partial \overline{\theta}}{\partial z} \phi_3$$
$$\overline{w'r'_v} = -\frac{2}{3} \frac{L}{C_h} e^{1/2} \frac{\partial \overline{r_v}}{\partial z} \phi_3$$

$$\overline{\theta' r_{\nu}'} = C_2 L^2 \frac{\partial \overline{\theta}}{\partial z} \frac{\partial \overline{r_{\nu}}}{\partial z} (\phi_3 + \psi_3)$$
$$\overline{\theta'^2} = C_1 L^2 \frac{\partial \overline{\theta}}{\partial z} \frac{\partial \overline{\theta_{\nu}}}{\partial z} \phi_3$$
$$\overline{r_{\nu}'^2} = C_1 L^2 \frac{\partial \overline{r_{\nu}}}{\partial z} \frac{\partial \overline{r_{\nu}}}{\partial z} \psi_3$$

Constants values following Cheng et al. (2002)

K-gradient formulation for fluxes gives :

$$\overline{u'w'} = -\frac{4}{15} \frac{L}{C_m} e^{1/2} \frac{\partial \overline{u}}{\partial z}$$
$$\overline{v'w'} = -\frac{4}{15} \frac{L}{C_m} e^{1/2} \frac{\partial \overline{v}}{\partial z}$$
$$\overline{w'\theta'} = -\frac{2}{3} \frac{L}{C_s} e^{1/2} \frac{\partial \overline{\theta}}{\partial z} \phi_3$$
$$\overline{w'r'_v} = -\frac{2}{3} \frac{L}{C_h} e^{1/2} \frac{\partial \overline{r_v}}{\partial z} \phi_3$$

$$\overline{\theta' r_{\nu}'} = C_2 L^2 \frac{\partial \overline{\theta}}{\partial z} \frac{\partial \overline{r_{\nu}}}{\partial z} (\phi_3 + \psi_3)$$
$$\overline{\theta'^2} = C_1 L^2 \frac{\partial \overline{\theta}}{\partial z} \frac{\partial \overline{\theta_{\nu}}}{\partial z} \phi_3$$
$$\overline{r_{\nu}'^2} = C_1 L^2 \frac{\partial \overline{r_{\nu}}}{\partial z} \frac{\partial \overline{r_{\nu}}}{\partial z} \psi_3$$

Thermal stability functions (Redelsperger and Sommeria 1981)

One length to rule them all : the master length scale !!!

OSUG turbulence workshop

a computed as in Lemarié et al. (2021)

RÉPUBLIQUE

FRANCAISE

Fonlite

Parameterization challenges for future hectometric resolutions

LES	Near GRAY ZONE	GRAY ZONE	MESO-SCALE
Resolved Large Eddies	Most Turbulence Resolved	Partly Resolved Turbulence	No Resolved Turbulence
$(e_{\rm res}/e_{\rm tot} \approx 1)$	$(e_{\rm res}/e_{\rm tot}\gg 0.5)$	$(e_{\rm res}/e_{\rm tot} \approx 0.5)$	$(e_{\rm res}/e_{\rm tot} pprox 0)$
C	0.02 ().4 4	$\rightarrow \Delta/l$
m ≈	$20 \text{ m} \approx 4$	00 m ≈ 4	km ≈ 10 km
Honnert et al (2020)			
 Increase in re 	esolution \rightarrow Assumption	tions validity ?	

- Horizontal homogeneity $(1D \rightarrow 3D)$?
- Mixing length formulation ?
- RANS formalism ?
- Subgrid equilibrium ?

Need for dedicated process studies at high resolution to assess scheme deficiencies.

 \approx

Méso-NH research model

- Research mesoscale model (Lac et al. 2018)
- Conjoint development between
 - Laboratoire d'Aérologie
 - ► CNRM
- Tool for process studies
- Sharing physics package with AROME (incl. Turb.)
- Also used to perform LES with 3D CBR scheme and

$$L^{\text{DEAR}} = \min\left(0.76 \frac{e^{1/2}}{N}, (\Delta x \Delta y \Delta z)^{1/3}\right)$$

Meso-NH physics parameterizations (Lac et al. 2018)

\rightarrow Research model and LES approach complementary to NWP operational models

Evaluation of turbulence parameterization at upper levels from a LES reference simulation in Meso-NH

Léo Rogel, Didier Ricard, Eric Bazile (MF-CNRM), Irina Sandu (ECMWF)

December 5th, 2024

OSUG turbulence workshop

Léo Rogel

Clear Air Turbulence (CAT)

Clear air radar echoes from Shigaraki S. T. radar (Fukao et al. 2011)

- High occurences in jet regions near the tropopause (UTLS region).
- Event linked to Kelvin-Helmholtz instabilities (Dutton and Panofsky, 1970)
- Turbulence forecasts important for aeronautic applications (reduction of injuries and cost)

K.H. billows (Wikipedia)

Primary synoptic and mesoscale forcing mechanisms

- Reduced dynamic stability regions in the vicinity of the jet (low Ri)
- Triggered by mesoscale phenomena, such as :
 - gravity waves (GWs)
 - convection
 - orographic waves.

From Mann (2019)

State of the art : hectometric simulations of CAT events

CTLHR d05 1420 UTC 10.75-km MSL Vertical Velocity, Winds, and Cloud Boundary

Example of a real case simulation at $\Delta x = 370m$. From Trier et al. (2020)

- Real cases of CAT now reproduced using hectometric simulations
- Need to resolve both the large scale flow containing the forcing mechanisms and « small scale » hydrodynamic instabilities
 - In practice this means simulating the flow on large grids or grid nesting

Can we use high resolution datasets from LES in the UTLS to evaluate the turbulence parameterization at coarser resolutions ?

- Case presentation
- LES overview
- Reference turbulence statistics from LES at Dx=130m

Upper level jet situation : January 27, 2018 Synoptic situation

27/01/2018, 300hPa ARPEGE wind and geopotential analysis 1200 UTC

Winterly jet above Atlantic and Europe

Jet exit area favourable region for CAT events (Knox 1997)

- Strong curvature of the flow
- Possible emission of GWs (Plougonven and Zhang 2014)

Upper level jet situation : January 27, 2018 Observations

RÉPUBLIQUE FRANÇAISE

Liberté Égalité Fraternit

Upper level jet situation : January 27, 2018 Observations

RÉPUBLIQUE FRANCAISE

Liberté Égalité

OSUG turbulence workshop

LES simulation configuration

- Isotropic grid between 7-14km
- Dz=Dx=130m (127x4000x4000 pts)
- Simulation using Deardorff (1980) 48
- Dt = 1s
- Coupled to Méso-NH (Dx=1.3km)
 1D turbulence scheme
 BL89 length scale

animation

Wave-like coherent structures on vertical wind and TKE

Vertical kinetic energy spectra, 200hPa, 1330 UTC

- Energy peak signature at 4.5km, coherent with shearing instability mode.
- Larger extension of spectral inertial region and narrower peak at Dx=130m

« Coarse graining » filter, w-wind and TKE 200hPa, 1330 UTC

Subgrid variability from LES Averaged ratio between 7-13km (1300-1500 UTC)

 $R^{SFS} < 20 \% \rightarrow simulation$ at Dx=130m is taken as reference.

Reference TKE evolution : LES vs CTRL ($\Delta x=1.3$ km)

Underestimation of parameterized TKE and mixing during the event

RÉPUBLIQUE

FRANCAISE

Égalité Fraternit Ø

METEO

OSUG turbulence workshop

 $e^{\mathsf{SFS}} = \frac{1}{2} \left(\overline{u'^2}^{\mathsf{SFS}} + \overline{v'^2}^{\mathsf{SFS}} + \overline{w'^2}^{\mathsf{SFS}} \right)$

$$\frac{1}{C_{m}} = \frac{1}{C_{m}} \left(\frac{\left(\overline{u'w'}^{SFS} \right)^{2} + \left(\overline{v'w'}^{SFS} \right)^{2}}{e^{SFS}S^{2}} \right)^{1/2}$$

Diagnosed reference length scale seems to validate parameterized values (BL89)

L

$$\mathsf{L}^{\mathsf{SFS}} = \frac{1}{\mathsf{C}_{\mathsf{m}}} \left(\frac{\left(\overline{\mathsf{u'w'}}^{\mathsf{SFS}} \right)^2 + \left(\overline{\mathsf{v'w'}}^{\mathsf{SFS}} \right)^2}{\mathsf{e}^{\mathsf{SFS}} \mathsf{S}^2} \right)^{1/2}$$

Diagnostic of the offline BL89 from reference TKE suggests **overestimation of the mixing length**

Evaluation of parameterized EDR : LES vs CTRL

Evaluation of parameterized EDR : LES vs CTRL

Reference vs parameterized dissipation

LES Dissipation seems 8 times smaller than CTRL in the growth phase

Reference dissipation length from LES data

- Turbulence parameterized with pronostic TKE equation and diagnostic mixing length formulation
- Spatial resolution increases in NWP model lead to new challenges for turbulence parameterisation in NWP, especially regarding their assumptions validity
- Scheme deficiencies should be identified using process studies with high resolution datasets
- To illustrate this, we used a LES of a CAT event at tropopause levels
- The CAT event is in the grey zone of turbulence at kilometer resolutions (in Méso-NH. AROME ?)
- Underestimation of TKE and mixing at tropopause levels
- Dissipation of TKE seems overestimated
- This suggests revisiting dissipation parameterization (but more analysis needed)

Thank you !

In-situ observations

- Observations by commercial aircraft predominant in volume
- Generalization of automated observations, replacing pilot reports (PIREPS)
- Based on vertical acceleration timeseries
- Observation cast in EDR metric (ICAO standard)

$$EDR = \varepsilon_w^{1/3}$$

TKE at 225 hPa (~12km), 1230 UTC, Δx=1.3km

Wind and TKE at 225 hPa (~12km), 1330 UTC, Δx=260m

Wave-like coherent structures on vertical wind and TKE

Budget of TKE at 200 hPa (1300 UTC) with Dx=260m

- Strong impact of 3D turbulence on **DP** and **DISS** terms

- Also nearly doubles subgrid TKE values

Reference vs parameterized budget terms

Instantaneous average profiles of **DP**^{SFS} and **TP**^{SFS}

$$\mathsf{DP}^{\mathsf{SFS}} = -\overline{u'_i u'_j}^{\mathsf{SFS}} \frac{\partial \overline{U_i}^{\Delta}}{\partial x_j}$$

$$\mathsf{TP}^{\mathsf{SFS}} = -\beta \overline{w'\theta'}^{\mathsf{SFS}}$$

Both fluxes slightly underestimated in CTRL

In conjunction with lower TKE

Kilometre scale simulations from observation

Kinetic energy spectra on LES grid (1300 UTC)

.

RÉPUBLIQUE FRANÇAISE

¢

OSUG turbulence workshop

Backup : stability profiles

Budget of reference LES terms

Subfilter (at 1.3km) TKE evolution (8-14km average)

Subfilter covariances (1330 UTC)

OSUG turbulence workshop