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- how ML is leveraged in computational oceanography


- with methods from the emerging field of SciML 

- How this leads to to deep changes in our systems


- and some interesting questions for the future…
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Objectives of this talk

Observations Models / AI



The context of computational oceanography
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climate -  environnemental changes 

human activities


 

physical oceanography 
currents, parameters

understand the functioning 

forecast its evolution (timescales)

Macro-turbulence 
internal waves (tides)Surface waves

Scale interactions, processes Interactions with components

develops and use numerical tools and methods  
maths, numerics, compute, data 
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Computational oceanography



Physics-based models 
(ocean circulation models) 

Physical models summarize our understanding of physical systems

Processes

Theory

HPC

Numerical methods

A key tool : ocean models 



dx ~ 1km
tides, eddies

Tier 1 HPC 
>200 000 lines 
>15 yrs  
5 institutions

A key tool : ocean models 

Physical models summarize our understanding of physical systems



Our toolboxes 
Inverse methods 
(data assimilation)

Observations 
(in situ/satellite)

Physical models 
(ocean circulation models) 

Tools for understanding but also monitoring and forecasting ocean circulation



Observations of the ocean 
Observations 

ARGO : ~4000 floatsARGO : ~4000 floats

Continuously operated networks

in
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New platforms 

Saildrones

Radar 
Doppler 
currents Sentinel 6 


 altimeter
Sentinel 3 

temperature



How AI (SciML) is affecting our field ?
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Tools are integrated into systems

Earth System Models  
(IPCC)

Combining models of each components  
of the climate system 



Tools are integrated into systems

Operational prediction systems 
(Copernicus)

St
at

e

Combining models and observations 
to produce forecasts

(Kurzrock, 2019)



Observations Physics-based 
forecast

Data  
assimilation 

Post-processing, 
dissemination 

denoising, inpainting 
parameter retrieval 

quality control

data fusion,  
tailored services 

data mining
AI, machine learning & 

data-driven approaches

Upstream Downstream

Core of our numerical 
systems

How AI is affecting our systems 



  AI-based ocean forecasting  

GLORYS 

Trained from ocean reanalyses Short term forecast skill Wang et al. (2024)

https://arxiv.org/abs/2402.02995



AI-native hybrid climate models   

Kochkov et al. (2024)

https://doi.org/10.1038/s41586-024-07744-y 
https://github.com/google-research/dinosaur 
https://github.com/google-research/neuralgcm 

https://doi.org/10.1038/s41586-024-07744-y
https://github.com/google-research/dinosaur
https://github.com/google-research/neuralgcm


Hybrid models combining physics and ML 
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Augmenting ocean models with ML components

The model is augmented with a trainable component

+

Input

Output

θ : parameters

step n

step n+1

θ : parameters

trained to minimise : 

with

ℒ(θ) = training objective
ℳ : model

- improving physical consistency 

- correcting model errors (vs obs.) 

- accelerating execution (x10-100) 

NB : does not have to be deterministic



Partee et al. 2022

https://doi.org/10.1016/j.jocs.2022.101707 


- missing terms from resolved quantities 

- closures for turbulent processes


- leveraging hi-res/process model data  

- encoded as closed forms or ML models  

-  a very active field (5-10 papers / months) 

oceanic macro-scale turbulence

ML for ocean models subgrid physics (1/2)

https://doi.org/10.1016/j.jocs.2022.101707


See for instance :  
M2LInES consortium  

https://m2lines.github.io

ML for ocean models subgrid physics (1/2)

Sane et al. 2023 

https://doi.org/10.1029/2023MS003890  

oceanic micro-scale turbulence

- missing terms from resolved quantities 

- closures for turbulent processes


- leveraging hi-res/process model data  

- encoded as closed forms or ML models  

-  a very active field (5-10 papers / months) 

https://m2lines.github.io
https://doi.org/10.1029/2023MS003890


∂t x + ℒ x + 𝒩( x) = 0
Dynamical system

∂t y + G(y) + = 0

∂t x̃ + ℒ x̃ + 𝒩( x̃) = 𝒩( x̃) − �̃�(x)

Resolved equations
x̃

∂t x + G(x) = 0

?

ℳ( x̃) ≃ 𝒩( x̃) − �̃�(x)

Subgrid closure

Learning the mapping

x̃(t) → ℳ( x̃(t))ℳNN(y)

Frezat et al. (2021)  
Physical consistency  

Symmetries, invariances

loss function / architecture 

Frezat et al. (2022)  
End-to-end training

Differentiable programming, 

different loss function 

w/ same architecture  

Frezat et al. (2024)  
Gradient-free training

training model emulator

for approx. gradient 

wrt NN. parameters 


 

θ : parameters

Performance, stability 
Generalisation, interpretability

ML for ocean models subgrid physics (2/2)



- estimating state-dependent bias corrections 
(Leith, 1978; Saha, 1992; DelSole and Hou, 1999) 

- state-dependent biais corrections provide a 
representation of model errors 

Palmer & Weisheimer (2011)

unbiased model
Model Biais Avg. Increment

Gregory et al. (2023)

biased model - w/ unbiased observations, analysis increments 
compensate for model biais

Learning model error from observations (1/2)



- NN for learning state-dependant biais 
corrections from analysis increments

Offline

Bonavita and Laloyaux, 2020; Watt-Meyer et al., 
2021; Chen et al., 2022; Gregory et al. 2023; 

Chapman and Berner 2023
https://doi.org/10.1029/2023MS003757 https://doi.org/10.1029/2022MS003309 

- w/ applications in GCMs (atmosphere 
and ocean/sea-ice)  

- showing success in improving the 
modeled climate state & forecast skill

State Errors

Ocean/sea-ice reanalyses (inc. obs) are 
used for estimating model errors 

Learning model error from observations (2/2)

https://doi.org/10.1029/2023MS003757


The plumbing challenges of hybrid modelling
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stable, robust, low abstraction languages 

high abstraction, fast evolving languages

supercomputers runs only on CPUs 

+

cloud ready natively runs on GPUs

+

Interfacing ocean models with DL frameworks (1/3)



Input

Output

step n+1

step n

+

Interfacing ocean models with DL frameworks (2/3)

Ocean circulation models 
Trainable components  

(closures, error corrections) 



Interfacing ocean models with DL frameworks (3/3)

- OASIS : exchange of 3D data between different codes

- Eophis : simplified deployment of ML models w/ OASIS

- Requires some change to the NEMO code

- Key : portability, domain decomposition 

Work by Alexis Barge at IGE

https://github.com/meom-group/eophis 

A. Barge

https://github.com/meom-group/eophis


offline learning   

x → 𝒩(x)mapping

from pre-existing data

ℒt + Δt

ℒt + 2Δt ℒt + NΔt

x(t)
y(t)

x(t + N Δt)

y(t + 2 Δt)
y(t + Δt)

x(t + Δt)

x(t + 2 Δt)

y(t + N Δt)

online learning   

∂t y + G(y) + = fℳNN(y)

along a trajectory  

Online training improves performance, stability, generalisation Frezat et al. 2022; List et al. 2024

The challenge of online training strategies (1/2) 

(a.k.a : a posteriori, solver-in-the-loop, end-to-end,  
auto-regressive roll-outs)



∂ℒ
∂θ

(z, ℳ(y | θ)) =
∂ℳ
∂θ

(y | θ)
∂ℒ
∂ℳ

gradient of the loss 

arg min
θ

ℒ(z, ℳ(y | θ))
target prediction

y(t + Δt) = Em ∘ ⋯ ∘ E1(y(t)) ℳ ≡ E

For time evolving problems, with

Auto-regressive operator (time)

∂ℳ
∂θ

≡
∂E
∂θ

=
∂(Em ∘ ⋯ ∘ E1)

∂θ
=

∂Em

∂Em−1
⋯

∂E2

∂E1

∂E1

∂θ

The gradient of the loss involves 

The challenge of online training strategies (2/2) 

tricky without Automatic 
Differenciation (AD) ! 



arg min
θ

ℒ(z, ℳ(y | θ))
target prediction

y(t + Δt) = Em ∘ ⋯ ∘ E1(y(t)) ℳ ≡ E

For time evolving problems, with

temporal evolution operator

∂ℳ
∂θ

≡
∂E
∂θ

=
∂(Em ∘ ⋯ ∘ E1)

∂θ
=

∂Em

∂Em−1
⋯

∂E2

∂E1

∂E1

∂θ

The gradient of the loss involves 

AD is readily available in some language

The challenge of online training strategies (2/2) 

tricky without Automatic 
Differenciation (AD) ! 



arg min
θ

ℒ(z, ℳ(y | θ))
target prediction

AD is readily available in some language

Differentiable programming 

- programs composed of differentiable building blocks

- building blocks : trainable and procedural code components 

- trainable end-to-end with gradient based optimisation 


See eg Thuerey et al. 2021

https://arxiv.org/abs/2109.05237

The challenge of online training strategies (2/2) 

But AD used yet

in climate models…

https://arxiv.org/abs/2109.05237


AI-native hybrid geoscientific models   

Kochkov et al. (2024)

https://doi.org/10.1038/s41586-024-07744-y 
https://github.com/google-research/dinosaur 
https://github.com/google-research/neuralgcm 

https://doi.org/10.1038/s41586-024-07744-y
https://github.com/google-research/neuralgcm
https://github.com/google-research/dinosaur


Towards AI-native hybrid geoscientific models ?  
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Irrgang et al. (2021)
Differentiable programming 

in earth system models ?

… for optimising 
- model parameters  
- numerical schemes 
- subgrid closures 
- … 
 

AI-native hybrid geoscientific models ?    
Betting harnessing  
observations &  
hi-fidelity simulations 



Input

Output

step n+1

step n

+

Current generation hybrid models 

Ocean circulation models 
Trainable components  

(closures, error corrections) 



Current generation hybrid models 

Modern code practices :  
Robust and versatile APIs and MLOPs

Existing systems  
Less flexible software design 

(APIs, DevOps, CI, …)



A new generation of geoscientific models

Modern code and compute : simple to write, scales, runs on any hardware  

Atmos

Ocean 



Modern code and compute : simple to write, scales, runs on any hardware  

A new generation of geoscientific models



stable, robust, low abstraction languages 

high abstraction, fast evolving languages

Allowing a seamless integration with AI 

high abstraction, fast evolving languages

AI Physics



Kochkov et al. (2024)

https://doi.org/10.1038/s41586-024-07744-y 

AI-native hybrid geoscientific models   

https://github.com/google-research/dinosaur 
https://github.com/google-research/neuralgcm 

Dinosaur

https://doi.org/10.1038/s41586-024-07744-y
https://github.com/google-research/dinosaur
https://github.com/google-research/neuralgcm


39

Total column water, 0-15 days

ERA5 NeuralGCM

AI-native hybrid geoscientific models   

Hybrid w/ online : non-blurry forecast + stable simulators (runs ~10 years)  

Kochkov et al. (2024) https://arxiv.org/abs/2311.07222



- Illustrated why we are augmenting models with ML


- Described how this can be done in practice today


- Advocated that a deep recast of our models is needed


- Described upcoming AI-native hybrid models 


- Exciting time for cross-disciplinary investigations ! 
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Summary 
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