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Part I :
Multi-fidelity for turbulent flow
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Multi-fidelity with Artificial Neural Networks

The objective of the MF methods is to learn the relation: yH = f (x , yL)
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To take into account a potential shift between yH and yF , we add an hyperparameter

τ which is selected with LOOCV : yH = f (x , yL(x − τ))
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Strategy to select high-fidelity points

3 first points : xmin, xmax , argmax
x
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Next point : argmax
x
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Lift coefficient of a NACA0012 (Rec = 50000)

Numerical setup :

▶ YALES2 finite volume librairy

▶ Incompressible fractionnal-step solver

▶ Unstructred Mesh

▶ Automatic mesh adapation

▶ RANS and LES

2D-RANS simulation



Lift coefficient of a NACA0012 (Rec = 50000)

LES, α = 8◦

LES, α = 16◦

2D-RANS simulation



Strategy applied on RANS and LES NACA0012 case (Rec = 50000)

⇒ Only 5 LES evaluations are needed to capture the main characteristics of the target
function.



Conclusion and Perspective

Conclusions :

▶ Strategy seems relevant

▶ RANS can help to perform LES

▶ ML used to help user

Difficulty :

▶ Sensitivity to network parameters



Conclusion and Perspective

Conclusions :

▶ Strategy seems relevant

▶ RANS can help to perform LES

▶ ML used to help user

Difficulty :

▶ Sensitivity to network parameters

Perspective :

▶ Taking into account the uncertainty
of statistical convergence



Part II :
Hybrid RANS-LES method based on rigourous velocity separation



Decomposition of the velocity

LES velocity decomposition : ui = ui + ũi

Using temporal mean : ui = ⟨ui ⟩+ ui
′ + ũi

With ⟨ũi ⟩ = 0, and therefore ⟨ui ⟩ = ⟨ui ⟩

u1 ⟨u1⟩ u1
′



Coupled equations

Playing with equation leads to 2 coupled equations :

▶ Equation on the mean field (RANS):

∂

∂xj

(
⟨ui ⟩⟨uj⟩

)
= −∂⟨P⟩

∂xi
+ ν

∂2⟨ui ⟩
∂xj∂xj

− ∂

∂xj
⟨u′iu′j ⟩

▶ Equation on the fluctuation (LES) :

∂u′i
∂t

+
∂

∂xj

(
u′iu

′
j + ⟨ui ⟩u′j + u′i ⟨uj⟩

)
= −∂P

′

∂xi
+ ν

∂2u′i
∂xj∂xj

− ∂

∂xj
⟨ũi ũj⟩+

∂

∂xj
⟨u′iu′j ⟩

Moerover,
⟨u′iu′j ⟩ = ⟨u′iu′j⟩+ ⟨ũi ũj⟩

Labourasse, E., & Sagaut, P. (2004). Advance in RANS-LES coupling, a review and an insight on the NLDE approach. Archives of Computational
methods in Engineering, 11, 199-256.
Xiao, H., & Jenny, P. (2012). A consistent dual-mesh framework for hybrid LES/RANS modeling. Journal of Computational Physics, 231(4),
1848-1865.



Hybrid RANS-LES

The idea : Solving the fluctuation requires less element than solving the complete field

Description of the method :

1. Compute steady field with RANS
modeling

2. Compute fluctuation using steady
field from RANS

Axial velocity in turbulent pipe (ReD = 5300)
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Mesh convergence - Pipe flow (ReD = 5300)

Automatic mesh convergence based on physical crietrion

⇒ For a same level of error, the LES-fluc has less element than classical LES
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Periodic Hill (ReD = 5600)
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Periodic Hill (ReD = 5600)

⇒ the time average of the fluctuation corrects the RANS field



Conclusion and Perspective

Conclusions :

▶ Potential gain on number of elements

▶ The fluctuation corrects the RANS field

Perspectives :

▶ Consolidate the gain on number of elements

▶ Zonal approach ?

▶ Use Reynolds stress from fluctuation to correct RANS ?



Merci pour votre attention !



Strategy applied on RANS and LES NACA0012 case

5.0 7.5 10.0 12.5 15.0 17.5 20.0
x

0.4

0.6

0.8

1.0

1.2

y

5.0 7.5 10.0 12.5 15.0 17.5 20.0
x

0.00
0.25



Strategy applied on RANS and LES NACA0012 case

5.0 7.5 10.0 12.5 15.0 17.5 20.0
x

0.4

0.6

0.8

1.0

1.2

y

5.0 7.5 10.0 12.5 15.0 17.5 20.0
x

0.00
0.25



Strategy applied on RANS and LES NACA0012 case

5.0 7.5 10.0 12.5 15.0 17.5 20.0
x

0.4

0.6

0.8

1.0

1.2

y

5.0 7.5 10.0 12.5 15.0 17.5 20.0
x

0.00
0.25


	anm0: 
	0.19: 
	0.18: 
	0.17: 
	0.16: 
	0.15: 
	0.14: 
	0.13: 
	0.12: 
	0.11: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


