

Perspectives for 3D Coherent X-ray Diffraction Imaging at the ESRF EBS

Federico Zontone ID10 - Complex Systems and Biomedical Science group ESRF – The European Synchrotron

Perspectives for 3D Coherent X-ray Diffraction Imaging at the ESRF EBS - F. Zontone - Journée EBS à l'OSUG, St. Martin d'Heres (France), Page 2 Nov 28th 2017 The European Synchrotron

... the fellows...

Yuriy Chushkin ID10-CBS, ESRF

Carla Polo Visitor from LNSL, Campinas, Brazil

Irina Snigireva Chem.&Microman. Lab, ESRF

Prof. Giuseppe Faraci Università di Catania

Catania - Italy

Salvatore Sanzaro IMM – CNR Catania - Italy Alessandra Alberti

Oxana (

Oxana Cherkas

Université du Maine Le Mans - France

Thomas Beuvier

Prof. Alain Gibaud

Perspectives for 3D Coherent X-ray Diffraction Imaging at the ESRF EBS - F. Zontone - Journée EBS à l'OSUG, St. Martin d'Heres (France), Page 3 Nov 28th 2017 CXDI: why and how

3D CXDI at ID10CS

Examples of applications at ID10CS

• 3D CXDI at ID10CS: status and outlook

3D CXDI and EBS L1

An object can be imaged by looking at **SPECKLES**

Speckle pattern: interference pattern in the far-field when $V_{scatt} \le V_{coh} = \xi^2_T * \xi_L$

High-resolution (q_{max}) 3D imaging ($\rho_e(\mathbf{r})$) can be obtained by simple inverse Fourier transform

CXDI: why and how

Lost phases can be (numerically) retrieved if speckles are **oversampled** (sampled better than Nyquist frequency, $\sigma > 2^{1/N}$)

Iterative phase retrieval algorithm

ESRF

3D CXDI at ID10

Tomography setup for samples in air and SAXS geometry

10 μ m beam 7x10¹⁰ ph/s at 8.1 keV Samples on Si₃N₄ membranes Maxipix2x2 (516x516, 55 μ m pixel size) Detectors at max 7m from sample

3D CXDI at ID10

From data collection...

φ scan: -84°,+78°, 0.25° step

Beam axis

512x512x512 Fourier grid

... to sample reconstruction 100

Phase retrieval algorithm applied directly to 3D Fourier space (3D FFT): - HIO and ER

- shrink-wrap for support

Yuriy's in-house software

Chushkin, Zontone et al., J. Synchrotron Rad. 21(2014)594

Perspectives for 3D Coherent X-ray Diffraction Imaging at the ESRF EBS - F. Zontone - Journée EBS à l'OSUG, St. Martin d'Heres (France), Page 8 Nov 28th 2017 The European Synchrotron

ESRF

Meso-structured semiconductors

Stimulated giant photoluminescence by phonon confinement in faceted 100 nm Si crystals

TEM of Si grains, obtained by inductively coupled plasma CVD

3D CXDI shows that assemblies of large octahedral grains favor the largest PL yield (highest porosity, lowest heat dissipation)

de Jong et al., Sci. Rep. 6, 25664 (2016)

Perspectives for 3D Coherent X-ray Diffraction Imaging at the ESRF EBS - F. Zontone - Journée EBS à l'OSUG, St. Martin d'Heres (France), Page 9 Nov 28th 2017

Nano-engineered TiO₂ materials

TiO₂ nano-rods deposited by reactive sputtering in grazing incidence geometry assisted by local oxidation (GIG-LOX) TiO₂ micro-flowers deposited by Aerosol Assisted Metal-Organic Chemical Vapor Deposition (AA-MOCVD)

<u>Supervisor:</u> Dr. David Muñoz-Rojas LMPG - Grenoble MINATEC (France)

<u>Supervisor:</u> Dr. Alessandra Alberti, IMM - Catania (Italy)

Perspectives for 3D Coherent X-ray Diffraction Imaging at the ESRF EBS - F. Zontone - Journée EBS à l'OSUG, St. Martin d'Heres (France), Page 10 Nov 28th 2017

The European Synchrotron ESRF

Nano-engineered TiO₂ materials

TiO₂ gig-lox layer

(a) Central slice

- (b) Volume representation
- (c) 3D reconstruction by CXDI
- (d) ESEM image

Surface-to-Volume ratio = **0.06 nm⁻¹** (by CHIMERA software)

Perspectives for 3D Coherent X-ray Diffraction Imaging at the ESRF EBS - F. Zontone - Journée EBS à l'OSUG, St. Martin d'Heres (France), Page 11 Nov 28th 2017

Nano-engineered TiO₂ materials

TiO₂ micro-flower

(a) Central slice

- (b) Volume representation
- (c) 3D reconstruction by CXDI
- (d) FE-SEM image

Surface-to-Volume ratio = **0.04 nm**⁻¹ (by CHIMERA software)

Bio-mimetic materials and crystallization processes

Following the formation of hollow $CaCO_3$ microsphere from (Ca^{2+}) , (CO_3^{2-}) solutions with a polystyrene sulfonate molecule

- Amorphous CC nucleates and forms porous vaterite that rapidly transforms into nonporous calcite

- With PSS vaterite crystallization is inhibited: a thin shell forms, more stable than the core

- With time, small vaterite crystals form outward the shell, while particles shrink and inner cores dissolve

SEM/TEM perfectly match CXDI reconstructions but can not probe the inside (particles are too big) Thomas Beuvier at ID10

Bio-mimetic materials and crystallization processes

Following the formation of hollow $CaCO_3$ microsphere from (Ca^{2+}) , (CO_3^{2-}) solutions with a polystyrene sulfonate molecule

SEM/TEM perfectly match CXDI reconstructions but can not probe the inside (particles are too big) Thomas Beuvier at ID10

Bio-mimetic materials and crystallization processes

Porosity evolution in microspheres during vaterite-to-calcite solid-state transformation by annealing at 420 °C

- Pore geometry totally changed
- Mainly open and spherical pores in Calcite microspheres
- Constant total pore volume (~16%)
- Specific surface is substantially reduced in Calcite (from 7.3(8) to 2.9(2) m²/g)
- The change in the pore morphology is governed by surface free energy minimization

By 3D CXDI is possible to control the internal morphology of CaCO3 microparticlesduring a phase transformationCherkas et al., Cryst. Growth Des. 2017, 17, 4183

Environment: Assessment of sugarcane bagasse nano-structure

Rose et al., Ind. Biotechnol., 2013/ Nijland et al., Biotechol. Biofuels, 2014

Carla Polo at ID10

Environment: Assessment of sugarcane bagasse nano-structure

Perspectives for 3D Coherent X-ray Diffraction Imaging at the ESRF EBS - F. Zontone - Journée EBS à l'OSUG, St. Martin d'Heres (France), Page 17 Nov 28th 2017

The European Synchrotron

ESRF

3D CXDI at ID10CS: status and perspectives

PROs

- Lens-less, full-field imaging technique
- q_{max} resolution
- Tolerant to translational instabilities
- Well suited for tomography at high resolution

CONs

- Limited FoV (few μm)
- Needs isolated objects
- Slow technique (few hours)
- Reconstructed ρ(r) not (yet) in absolute units

3D CXDI as a high-resolution imaging tool

3D CXDI@ID10CS is hitting the setup limitations

Pixellated details: Half-period resolution close to voxel size

Further improvement limited by attainable q_{max}

- Limited flux
- Limited focusing capabilities (10µm beam only)
- Limited detector distance (max 7m)
- Limited Maxipix detector (0.25M only)

3D CXDI at EBS L1

The EBS machine will lead to ~100X increase in brilliance

100X increase in coherence flux ($F_c = B\lambda^2$)

- Increase spatial resolution below 10 nm
- Acquisition times from hours to minutes

Larger transverse coherence length

 \blacktriangleright Increase FOV up to 25 μ m

EBS L1 is the project **fully dedicated** to coherence in the far-field for **XPCS**, **XCCA** and **CXDI** (today, ID10CS is operating in 50% time sharing mode)

Goals

10nm resolution with >10³ resolution elements (>10 μ m samples) in 3D

Go to higher energies (E > 10 keV)

Time-resolved 3D-CXDI (in situ, in operando environments)

3D CXDI at EBS L1

EBS L1 promises to remove the present limitations

- 100X higher flux
- Increased focusing capabilities (down to 3µm beams)
- Increased detector distance to max 15m
- Detectors like Eiger 4M or MÖNCH 16M (in future) will achieve the goals

ESRF

EBS L1: Many new scientific challenges

Rodriguez et al., IUCrJ, 2015 Frozen hydrated Neospora Caninum

Frank et al., Sci. Rep 7, 14081,2017 Cryo-fixed malaria-infected "ghost" human RBC

Nano-scale bone structure: ordered arrangement of collagen molecules and mineral platelets

Zimmermann et al., in preparation Verezhak et al., in preparation 3D imaging at 5-10 nm resolution with CXDI (10 μm samples, 100x coherent flux)

- Internal structure in cells and tissues
- Nano-engineered soft and hard materials
- Biomimetic materials and crystallization processes

Courtesy of C. Giannini, CNR, Bari, Italy

Perspectives for 3D Coherent X-ray Diffraction Imaging at the ESRF EBS - F. Zontone - Journée EBS à l'OSUG, St. Martin d'Heres (France), Page 22 Nov 28th 2017

