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Snow avalanche natural hazard

threatened mountain community (people, buildings, communication networks, skiers...)

need for long term land use planning

Figure: Dense snow avalanche consequence: one
building was destroyed (Le Sappey en Chartreuse -
VALLA F. - Isère)

Figure: February 1999 avalanche of Montroc: 17
destroyed buildings and 12 deaths (Mont-Blanc,
French Alps)

=⇒ Risk improvement: precise avalanche hazard and vulnerability of exposed element
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Avalanche models

Fully statistical model (inference on available real data)

Deterministic propagation models depending on a constitutive law with random input:
Coulombian friction law (1 coeff.)
Voellmy friction law (2 coeff.)
More complex friction law (> 2 coeff.)

Output of avalanche models

Velocity, runout distance are direct output of models

Pressure computations is under interests, Cx is the drag coefficient to be determined to
assess pressure on the obstacle:

Cx = 2, constant drag coefficient.
Cx defined according to fluid properties and obstacles shape.

Time and spatial variations for structure study

Pressure is considered to uniformly impact the structure

Time variation of the avalanche signal is not considered as structure response is
supposed to be quasi-static
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Literature curves:

Wilhelm, 1998: vulnerability of
concrete buildings with
reinforcement, piecewise according to
damage thresholds

Fuchs, 2008: economical approaches

Bertrand et al, 2010: numerical
simulation

Barbolini et al., 2004: empirical
estimates Figure: Vulnerability curves from different

literature sources (Naaim et al., 2008)
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Overview

RC wall features

Boundary conditions taken into consideration: clamped, supported and free edges.

Uniformly loaded

Figure: Dwelling house impacted by a snow avalanche (a) - RC wall geometry (b-c)

y 

z 

x 

(b) (c) 

y 

z 

steel bar 

concrete 
matrix Avalanche Flow 

(a) 

u 

v 

xl

yl

h

q 

6/22 Favier, P. Vulnérabilité et risque du BA en avalanches
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RC behavior

RC wall features

Composed of concrete and steel bars orthogonally disposed.

Concrete and steel parameters: fc28, ft, εuc, fy , εuk

Figure: Transitions between each damage levels of RC
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Under bending

RC wall features

Under bending, moments in the section can be calculated at 3 stages.

Figure: Stress/Strain diagram according to 3 bending stages
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Collapse

Collapse defined with the yield line
theory (Johansen,1962)

define a yield line patterns set
depending on boundary conditions

internal and external forces are
calculated

determine the failure pattern
minimizing the collapse load

Figure: Uniformly loaded slab simply supported
at all edges: theoretical yield line pattern and
experimental crack pattern on bottom surface
(Sawczuk et Jaeger, 1963)

9/22 Favier, P. Vulnérabilité et risque du BA en avalanches



Quasi-analytical vulnerability
Risk application

Introduction
Methods
Results
Conclusion and Perspectives

Statistical input variables and failure probability calculation

Statistical distribution

Normal distribution with a 5% CoV: lx, ly , h, fc28, fy , ft
JCSS distribution:

fc28 = exp(m+ tνs(1 + 1
n )0.5),

fbc = αfλc28Y1,

ft = 0.3f
2/3
bc Y2,

lx, ly , h, fy .

Normal correlated distribution with a 5% CoV and JCSS correlation matrix.

Failure probability definition

Pf = P [r ≤ s] =

∫ s

−∞
fR(r)dr. (1)

(r : resistance, s : sollicitation)

Monte Carlo simulations and Sobol index

N Monte Carlo simulations: fR(r) is described with confidence intervals

STi = 1−
VX∼i (EXi (Y |X∼i))

V (Y )
are calculated as ˆSTi = 1

2N

∑N
j=1(f(A)j − f(A

(i)
B )j)2
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Fragility curves derivation: example

Figure: Output histogram of the ULS case for a rectangular wall with one free edge and three clamped edges with
normal independent inputs (a), cumulative distribution function associated (b)
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All configurations overview

Figure: Fragility curves according to boundary
conditions sorted by failure criterion: (a) linear
frame, (b) semi log frame.

Figure: Fragility curves according to boundary
conditions sorted by boundary conditions: (a)
linear frame, (b) semi log frame.
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Inputs influence

Figure: Sensibility pies for the elastic failure
criteria

Figure: Comparison between fragility curves from
different inputs distribution and deterministic
approach of a slab with one free edge and three
clamped edges under ULS considerations.
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Take home message

Systematic methodology approach to assess fragility curves based on: reliability
framework and not time-consuming mechanical modeling

Fragility curves set available for risk analysis

Increase of knowledge concerning the vulnerability behavior of RC structures

Description of sensitivity analysis

To follow

Use more complex mechanical modeling such as FEM

Quantify risk sensibility to fragility curves

Figure: Simplified spring mass model
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Risk calculation

rz =

∫
p(y)V (z, y) dy (2)

rz : specific risk

p(y): avalanche intensity distribution

V (z, y): damage
vulnerability/susceptibility/fragility
for the element z towards the
avalanche intensity y

z: element at risk

y: avalanche intensity

Z 

X Xb 

Dense snow avalanche 

Reinforced concrete building 
 modeled by its vulnerability relation 

Figure: Considered framework : xb: building
absissa at various positions in the runout zones.
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Use of statistical–dynamical outputs

the avalanche intensity: the pressure, the runout and the avalanche occurrence

the pressure is deduced from the velocity of the flow, the drag coefficient Cx is
considered from [?] or [?]: Pr = Cx

1
2
ρv2 .

Computations

rz(xb) = λ

∫
p(Pr|xb ≤ xstop)P (xb ≤ xstop)× V (z, Pr) dPr . (3)

Rb(xb) ≈ λ× P (xb ≤ xstop)×
1

N

N∑
k=1

V (b, Prk) . (4)
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Overview

(a) Vulnerability relations for reinforced concrete
structure.

(b) Risk calculation and confidence intervals for
structural vulnerability and literature relations.

17/22 Favier, P. Vulnérabilité et risque du BA en avalanches



Quasi-analytical vulnerability
Risk application

Introduction
Methods
Results
Decisionnal aspect
Risk sensibility to hazard model

Bounds for risk (Fig.)

(c) Vulnerability relations for reinforced concrete
structure.

(d) Risk calculation for structural vulnerability:
min and max bounds.
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Figure: Schéma récapitulatif de la décision

Decisionnal calculation

The decision is the height of a protective dam hd. The decisionnal risk is calculated as:

Rb(hd) = C0hd + C1Aλ

∫
p(Pr|xb ≤ xstop,hd )p(xb ≤ xstop,hd )× V (b, Pr) dPr . (5)
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Obstacle - Flow interaction

The velocity at the dam abscissa
v2
hd

v2
d0

= 1−
αhd

2h
. (6)

Velocity propagation

The velocity after the dam abscissa:

Sliding block propagation

Shallow water equation propagation

Delta propagation:
δvelocity = v0(xd)− vhd (xd) (7)

vhd (x) =

{
v0(x)− δvelocity if x ≥ xd
v0(x) else .

(8)
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Decisional risk calculation

(a) Optimal design for decisional risk to reach the
elastic limit state of the structure.

(b) Optimal design for decisional risk to reach the
collapse state of the structure.

Vulnerability sensitivity of decisional risk calculation

The optimal decision is the height of a protective dam hd. It looks like it is less influenced by
the vulnerability inputs than the risk calculation.
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Conclusion

Take home message

Fragility curves with a semi-analytical and numerical approaches

Possibility to link them to human considerations

Providing bounds to risk calculation

Vulnerability relations important for risk calculation, less for optimal design calculation

Things to do

Analytical sensibility of the risk (not presented today)
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