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Snow avalanche natural hazar

o threatened mountain community (people, buildings, communication networks, skiers...)

o need for long term land use planning

Figll!'e: Dense snow avalanche consequence: one Figure: February 1999 avalanche of Montroc: 17
building was destroyed (Le Sappey en Chartreuse - destroyed buildings and 12 deaths (Mont-Blanc,
VALLA F. - Isére) French Alps)

— Risk improvement: precise avalanche hazard and vulnerability of exposed element
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Avalanche models

o Fully statistical model (inference on available real data)

o Deterministic propagation models depending on a constitutive law with random input:
o Coulombian friction law (1 coeff.)
o Voellmy friction law (2 coeff.)
o More complex friction law (> 2 coeff.)

Output of avalanche models

e Velocity, runout distance are direct output of models

o Pressure computations is under interests, C is the drag coeflicient to be determined to
assess pressure on the obstacle:

o C, = 2, constant drag coefficient.
o C, defined according to fluid properties and obstacles shape.

Time and spatial variations for structure study

@ Pressure is considered to uniformly impact the structure

o Time variation of the avalanche signal is not considered as structure response is
supposed to be quasi-static

Vulnérabilité et risque du BA en avalanch
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Fig. 1. Multivariate statistical-dynamical avalanche madel. Avalanche model and case study from Eckert et al. (2010a): a} Jocal runout distance distribution. b) one-to-one relation
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ulnérabilité et risque du BA en avalanches
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o Wilhelm, 1998: vulnerability of
concrete buildings with
reinforcement, piecewise according to
damage thresholds

o Fuchs, 2008: economical approaches 10 20 3 © 50
. Impact pressure (k.Pa)
o Bertrand et al, 2010: numerical —e—Wiham- Derse alanche  —a — Baibolin, Ponder avalanche
. . —=a —Barbolini- Powder avalanche —=—Fuchs - Eco - Tauc = 2000 kPa
simulation —e—Fuchs- Eco-T: bR e e
—+— Numeical Simulation Cd=4 —=—Edkertetal 2008

o Barbolini et al., 2004: empirical
estimates

Figure: Vulnerability curves from different
literature sources (Naaim et al., 2008)
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Overview

@ Boundary conditions taken into consideration: clamped, supported and free edges.

@ Uniformly loaded

Figure: Dwelling house impacted by a snow avalanche (a) - RC wall geometry (b-c)

(a) (b) (c)
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RC behavior

RC wall features

@ Composed of concrete and steel bars orthogonally disposed.

o Concrete and steel parameters: feog, ft, €uc, fy, Euk

Figure: Transitions between each damage levels of RC
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Under bending

@ Under bending, moments in the section can be calculated at 3 stages.

Figure: Stress/Strain diagram according to 3 bending stages
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Collapse defined with the yield line
theory (Johansen,1962)

o define a yield line patterns set
depending on boundary conditions

o internal and external forces are
calculated

o determine the failure pattern
minimizing the collapse load S )
igure: Uniformly loaded slab simply supported
at all edges: theoretical yield line pattern and
experimental crack pattern on bottom surface
(Sawczuk et Jacger, 1963)
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Statistical input variables and failure probability calculation

cal distribution

o Normal distribution with a 5% CoV: Iy, ly, h, fe28, fy, [t
o JCSS distribution:

o feos = exp(m + t,s(1 + %)0'5)7

o foe = OlfczgYh

o fi = 0.3f2%Ys,

o Iz, ly, h, fy

o Normal correlated distribution with a 5% CoV and JCSS correlation matrix.

Failure probability definition

Pr =P <s= [ fat)ar (1)

(r : resistance, s : sollicitation)

Monte Carlo simulations and Sobol index

o N Monte Carlo simulations: fr(r) is described with confidence intervals

Vx _ (Ex, (Y[X~; -
o S, =1— X~’(+}E)‘)) are calculated as St; = 2N Z] 1 (AA); — (A( )) i)?

Vulnérabilité et ue du BA en avalanches
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Fragility cur ivation:
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F‘igure: Output histogram of the ULS case for a rectangular wall with one free edge and three clamped edges with
normal independent inputs (a), cumulative distribution function associated (b)

ue du BA en ¢
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Figure: Fragility curves according to boundary Figure: Fragility curves according to boundary
conditions sorted by boundary conditions: (a)
linear frame, (b) semi log frame.

conditions sorted by failure criterion: (a) linear
frame, (b) semi log frame.
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Take home me

o Systematic methodology approach to assess fragility curves based on: reliability
framework and not time-consuming mechanical modeling

o Fragility curves set available for risk analysis
o Increase of knowledge concerning the vulnerability behavior of RC structures

o Description of sensitivity analysis

To follow

o Use more complex mechanical modeling such as FEM

o Quantify risk sensibility to fragility curves

WX, 1) = W (1) (x) (C) (d)
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iy = / P@)V (2,y) dy @)

r,: specific risk

p(y): avalanche intensity distribution
V(z,y): damage

vulnerability /susceptibility /fragility
for the element z towards the
avalanche intensity y

z: element at risk

y: avalanche intensity

Dense snow avalanche

Reinforced concrete building
modeled by its vulnerability relation

Figure: Considered framework : zp: building
absissa at various positions in the runout zones.
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Use of statistical-dynamical outputs

o the avalanche intensity: the pressure, the runout and the avalanche occurrence

o the pressure is deduced from the velocity of the flow, the drag coefficient Cy is
considered from [?] or [?]: Pr = C’m%pv2 .

J
7z () = )\/P(Prlwb < Tstop) P(wy < Tstop) X V (2, Pr) dPr . (3)
LN
Ry(xp) = A X P(xp < Tstop) X — 2 V (b, Pry) . (4)

risque du BA en a
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(a) Vulnerability relations for reinforced concrete (b) Risk calculation and confidence intervals for
structural vulnerability and literature relations.
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now avalanche

Decision : dam height

Xq Xy X

stopg

Figure: Schéma récapitulatif de la décision

Decisionnal calculation

The decision is the height of a protective dam hgy. The decisionnal risk is calculated as:

Ry(hgq) = Coha + ClA/\/p(Pr|wb < Zstop,hg )P(Tb < Tstop,hy) X V (b, Pr) dPr . (5)
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Obstacle - Flow interaction

The velocity at the dam abscissa

2
hg _ ahg )
vg 2h
v

Velocity propagation

The velocity after the dam abscissa:
o Sliding block propagation
o Shallow water equation propagation
o Delta propagation:
dvelocity = V0(Td) — Vn, (Tq) (7)

’UO(m) - Jvelocity if x> xq

Vhy (z) = { vo(z) e . (8)

risque du BA en aval
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Decisional risk calculation
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(a) Optimal design for decisional risk to reach the (b) Optimal design for decisional risk to reach the
elastic limit state of the structure. collapse state of the structure.

Vulnerability sensitivity of decisional risk calculation

The optimal decision is the height of a protective dam hg. It looks like it is less influenced by
the vulnerability inputs than the risk calculation.
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Conclusion

Take home message

o Fragility curves with a semi-analytical and numerical approaches
o Possibility to link them to human considerations

o Providing bounds to risk calculation

o Vulnerability relations important for risk calculation, less for optimal design calculation

Things to do

o Analytical sensibility of the risk (not presented today)

risque du BA en a
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