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2 Gaume and others: Slab tensile failure

softening) interface with a Mohr-Coulomb rupture criterion
characterized by a cohesion c and a friction coe�cient µ =
tan 30�. A spatial heterogeneity of the weak layer is accounted
for through a stochastic distribution of the cohesion c with
a spherical covariance function of correlation length ✏. The
average cohesion is denoted hci and its standard deviation
�c.

Besides the evaluation of avalanche release depth distribu-
tions, this model enabled to evidence, a heterogeneity smooth-
ing e↵ect caused by stress redistribution due to slab elasticity
and characterized by the ration between correlation length ✏

and a typical length scale of the system ⇤ associated to elastic
e↵ects (see Gaume and others, 2012b,a, for more details).

3. RELEASE TYPES
Two types of avalanche releases were distinguished in the
simulations: (1) full slope release, where the entire simulated
slope is released without tensile failure within the slab (Fig. 1a);
(2) partial slope release, where tensile failure occurs within
the slab so that only a part of the slope is released (Fig. 1b).

Importantly, however, for both release types, the primary
rupture process observed is always the shear failure of the
weak layer. Slab rupture, when existent, systematically con-
stitutes a secondary process. In the case of a full slope release,
the heterogeneity magnitude is not su�cient to trigger a ten-
sile failure within the slab. The basal shear failure in the weak
layer thus propagates until the top boundary condition which
can be seen as an anchor point where slab tensile rupture
would occur (Fig. 1a).

Replaced in the context of natural avalanche paths, this
boundary condition can represent a strong geomorphological
feature susceptible to trigger the tensile failure (ridges, rocks,
trees, local convex zone, etc.). On the contrary, for partial
slope releases, the cohesion variations in the weak layer are
su�cient to generate the tensile failure within the system.
Local strong zones can e↵ectively stop the progression of the
basal failure and the excess of stress is redistributed in the
slab and engenders slab tensile opening.

4. RESULTS: PARAMETRIC ANALYSIS
In this section, we present the results in terms of partial slope
release probability also called tensile failure probability and

denoted Ptf as a fonction of the following model parameters:
tensile strength �T , correlation length ✏, slab depth h and
cohesion standard deviation �c. First, the standard deviation
is fixed (�c = 0.3 kPa) and the other parameters, tensile
strength �T , slab depth h and correlation length ✏ are varied
to understand their influence. Then ✏ is fixed at 0.5 m and
the influence of �c is investigated for di↵erent values of h.

4.1. Influence of �T

Fig. 2 represents the probability of tensile failure Ptf within
the system as a function of the tensile strength �T for dif-
ferent values of the correlation length ✏ and a constant slab
depth h = 1 m (left) and for di↵erent values of the slab depth
h and a constant correlation length ✏ = 0.5 m (right). Tensile
strength values are varied between 0.5 and 1.5 kPa. As ex-
pected, this probability decreases with the tensile strength �T
from 100% to 0%. The rate of decrease and tensile strength
values at 0 and 100 % depend on slab depth h and correlation
length ✏.

4.2. Influence of h
As shown in Fig. 2 (right), the probability Ptf decreases glob-
ally with slab depth h. The higher h is, the faster the prob-
ability decreases with �T . The values of �T for Ptf = 100%
is almost una↵ected by the slab depth h while the value for
Ptf = 0% is deacreasing with increasing slab depth h. In
more detail, Fig. 3 reports the tensile failure probability Ptf

as a function of h for di↵erent tensile strength values and a
constant correlation length ✏ = 0.5 m. For �T < 0.75 kPa,
Ptf is approximately equal to 100%, whereas, Ptf is approxi-
mately equal to 0% for �T > 1.5 kPa. For intermediate values
of �T , Ptf decreases from h = 0.5 m to h = 0.25 m. A single
simulation for h = 0.25 m was also performed for �T = 1 kPa
to confirm the increase of Ptf with h for h < 0.5 m that will
be highlighted be the statistical model developed in the next
section.

4.3. Influence of ✏
The influence of correlation length ✏ is also noticeable on
Fig. 2 (left). The higher ✏ is, the slighter the probability de-
creases with �T . Besides, for constant tensile strength values,
Ptf globally deacreases with ✏. In contrast with the influ-
ence of slab depth h, the values of �T for Ptf = 100% is

Fig. 1. Diagram representing the two types of failure observed in the simulations. (a) full-slope release: the localization of the slab
tensile failure is influenced by morphological features (rocks, trees, ridge, curvature...). (b) partial-slope release: the local heterogeneity is
su�cient to trigger the tensile failure within the slab. The red-colored part of the weak layer represents a local zone of important shear
strength. The blue curves represent an illustration of the heterogeneity of shear stress di↵erence �⌧ and the dotted line represents the
tensile strength �T .
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Parameter Typical value Range Reference

Slab density ⇢ 250kg/m3 100� 300kg/m3 Schweizer (1999)
Slab Young modulus E 1MPa 0.2� 12MPa Schweizer (1999)
Slab Poisson ratio ⌫ 0.2 0.1� 0.4 Schweizer (1999)
Slab viscosity ⌘ 108Pa.s 0.2� 5⇥ 108Pa.s Mellor (1975); Camponovo (1998)
W. l. cohesion c 1kPa 0.5� 2.5kPa Föhn and others (1998); Jamieson and

Johnston (2001)
W. l. friction angle � 30� 20� 40� De Montmollin (1978); van Herwijnen

and Heierli (2009)
W. l. displacement to failure u

p

2mm 1� 10mm McClung (1977)
W. l. residual displacement u

r

4mm 1� 10mm McClung (1977)
Correlation length ✏ of w.l. cohesion
variations

0.5� 40m 0.5� 10m Schweizer and others (2008)

Coe�cient of variation CV = �
c

/hci 30% 15� 50% Schweizer and others (2008)

Table 1. Mechanical parameters used
in this study and typical ranges of vari-
ation. (w.l.: weak layer)

Fig. 1. Geometry of the system: a weak layer interface under a
cohesive slab of depth h.

force vector at nodes andD the damping matrix. In our study,
the matrix D is taken as zero.

The system considered is a 2D (plane stress conditions) uni-
form slope inclined at an angle ✓, of length L = 50m (Fig. 1).
The x-axis is in the slope-parallel direction and the z-axis
is orthogonal to the slope. The system consists of a slab of
thickness h overlying a weak layer modeled as an interface
of zero thickness. The mesh is composed of 100 elements in
the slope-parallel direction x, and six elements in direction
z. We used quadrilateral elements for the slab (QUA4: four
nodes with 2 dof/node) and joint elements for the weak layer
interface (JOI2: four nodes with 2 dof/node). We checked
that the mesh resolution is fine enough so that it does not
influence the results to be presented (see in particular section
3.1).

The boundary conditions applied to slab are the following:
At the upper end of the slope (BC1) a shear stress �xz =
�⇢g(z + h) sin ✓ is applied in order to avoid bending of the
slab linked to finite size e↵ects. At the lower end (BC2), a
nil displacement in slope-parallel direction x is imposed. The
upper surface of the slab is free and the base is subjected to
an interface law, i.e. a law relating shear stress to tangential
displacement, which represents the weak layer.

2.3. Constitutive relationships
Snow is a very complex material whose mechanical behavior
is still not fully understood. In the present model, only the
ingredients necessary to produce realistic instability of the
system, namely strain-softening of the weak layer and elas-
ticity of the slab, are taken into account. Table 1 summarizes

Fig. 2. Weak layer constitutive law.

the value of the di↵erent mechanical parameters used in this
study.

Weak Layer

Various studies (McClung, 1979; Föhn and others, 1998; Mc-
Clung and Schweizer, 2006) have shown that weak snow layers
behave as strain-softening (or quasi-brittle) materials. The
softening is caused by the break of ice bridges at the micro-
scopic scale. In existing mechanical models (McClung, 1979;
Bazant and others, 2003; Fy↵e and Zaiser, 2004, 2007; Ma-
hajan and Joshi, 2008; Mahajan and others, 2010; Gaume
and others, 2011), weak layers are generally characterized by
a rupture displacement up and a critical softening displace-
ment �. The pre-peak behavior is considered to be elastic, but
sti↵ness values are very di�cult to obtain since these layers
are generally very thin and unstable.

In the present study, the weak layer is modeled as a displacement-
softening interface with a simple, linear piecewise relationship
between shear stress ⌧ and tangential displacement u (Fig. 2).
The value of the shear stress peak ⌧p is governed by the Mohr-
Coulomb criterion: ⌧p = c + �n tan�, with c the weak layer
cohesion, �n the normal stress and � the friction angle. The
friction angle has been chosen as constant � = 30� (De Mont-

4.1 Application to the evaluation of avalanche release depth 59
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softening interface with a simple, linear piecewise relationship
between shear stress ⌧ and tangential displacement u (Fig. 2).
The value of the shear stress peak ⌧p is governed by the Mohr-
Coulomb criterion: ⌧p = c + �n tan�, with c the weak layer
cohesion, �n the normal stress and � the friction angle. The
friction angle has been chosen as constant � = 30� (De Mont-
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softening) interface with a Mohr-Coulomb rupture criterion
characterized by a cohesion c and a friction coe�cient µ =
tan 30�. A spatial heterogeneity of the weak layer is accounted
for through a stochastic distribution of the cohesion c with
a spherical covariance function of correlation length ✏. The
average cohesion is denoted hci and its standard deviation
�c.

Besides the evaluation of avalanche release depth distribu-
tions, this model enabled to evidence, a heterogeneity smooth-
ing e↵ect caused by stress redistribution due to slab elasticity
and characterized by the ration between correlation length ✏

and a typical length scale of the system ⇤ associated to elastic
e↵ects (see Gaume and others, 2012b,a, for more details).

3. RELEASE TYPES
Two types of avalanche releases were distinguished in the
simulations: (1) full slope release, where the entire simulated
slope is released without tensile failure within the slab (Fig. 1a);
(2) partial slope release, where tensile failure occurs within
the slab so that only a part of the slope is released (Fig. 1b).

Importantly, however, for both release types, the primary
rupture process observed is always the shear failure of the
weak layer. Slab rupture, when existent, systematically con-
stitutes a secondary process. In the case of a full slope release,
the heterogeneity magnitude is not su�cient to trigger a ten-
sile failure within the slab. The basal shear failure in the weak
layer thus propagates until the top boundary condition which
can be seen as an anchor point where slab tensile rupture
would occur (Fig. 1a).

Replaced in the context of natural avalanche paths, this
boundary condition can represent a strong geomorphological
feature susceptible to trigger the tensile failure (ridges, rocks,
trees, local convex zone, etc.). On the contrary, for partial
slope releases, the cohesion variations in the weak layer are
su�cient to generate the tensile failure within the system.
Local strong zones can e↵ectively stop the progression of the
basal failure and the excess of stress is redistributed in the
slab and engenders slab tensile opening.

4. RESULTS: PARAMETRIC ANALYSIS
In this section, we present the results in terms of partial slope
release probability also called tensile failure probability and

denoted Ptf as a fonction of the following model parameters:
tensile strength �T , correlation length ✏, slab depth h and
cohesion standard deviation �c. First, the standard deviation
is fixed (�c = 0.3 kPa) and the other parameters, tensile
strength �T , slab depth h and correlation length ✏ are varied
to understand their influence. Then ✏ is fixed at 0.5 m and
the influence of �c is investigated for di↵erent values of h.

4.1. Influence of �T

Fig. 2 represents the probability of tensile failure Ptf within
the system as a function of the tensile strength �T for dif-
ferent values of the correlation length ✏ and a constant slab
depth h = 1 m (left) and for di↵erent values of the slab depth
h and a constant correlation length ✏ = 0.5 m (right). Tensile
strength values are varied between 0.5 and 1.5 kPa. As ex-
pected, this probability decreases with the tensile strength �T
from 100% to 0%. The rate of decrease and tensile strength
values at 0 and 100 % depend on slab depth h and correlation
length ✏.

4.2. Influence of h
As shown in Fig. 2 (right), the probability Ptf decreases glob-
ally with slab depth h. The higher h is, the faster the prob-
ability decreases with �T . The values of �T for Ptf = 100%
is almost una↵ected by the slab depth h while the value for
Ptf = 0% is deacreasing with increasing slab depth h. In
more detail, Fig. 3 reports the tensile failure probability Ptf

as a function of h for di↵erent tensile strength values and a
constant correlation length ✏ = 0.5 m. For �T < 0.75 kPa,
Ptf is approximately equal to 100%, whereas, Ptf is approxi-
mately equal to 0% for �T > 1.5 kPa. For intermediate values
of �T , Ptf decreases from h = 0.5 m to h = 0.25 m. A single
simulation for h = 0.25 m was also performed for �T = 1 kPa
to confirm the increase of Ptf with h for h < 0.5 m that will
be highlighted be the statistical model developed in the next
section.

4.3. Influence of ✏
The influence of correlation length ✏ is also noticeable on
Fig. 2 (left). The higher ✏ is, the slighter the probability de-
creases with �T . Besides, for constant tensile strength values,
Ptf globally deacreases with ✏. In contrast with the influ-
ence of slab depth h, the values of �T for Ptf = 100% is

Fig. 1. Diagram representing the two types of failure observed in the simulations. (a) full-slope release: the localization of the slab
tensile failure is influenced by morphological features (rocks, trees, ridge, curvature...). (b) partial-slope release: the local heterogeneity is
su�cient to trigger the tensile failure within the slab. The red-colored part of the weak layer represents a local zone of important shear
strength. The blue curves represent an illustration of the heterogeneity of shear stress di↵erence �⌧ and the dotted line represents the
tensile strength �T .
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Parameter Typical value Range Reference

Slab density ⇢ 250kg/m3 100� 300kg/m3 Schweizer (1999)
Slab Young modulus E 1MPa 0.2� 12MPa Schweizer (1999)
Slab Poisson ratio ⌫ 0.2 0.1� 0.4 Schweizer (1999)
Slab viscosity ⌘ 108Pa.s 0.2� 5⇥ 108Pa.s Mellor (1975); Camponovo (1998)
W. l. cohesion c 1kPa 0.5� 2.5kPa Föhn and others (1998); Jamieson and

Johnston (2001)
W. l. friction angle � 30� 20� 40� De Montmollin (1978); van Herwijnen

and Heierli (2009)
W. l. displacement to failure u

p

2mm 1� 10mm McClung (1977)
W. l. residual displacement u

r

4mm 1� 10mm McClung (1977)
Correlation length ✏ of w.l. cohesion
variations

0.5� 40m 0.5� 10m Schweizer and others (2008)

Coe�cient of variation CV = �
c

/hci 30% 15� 50% Schweizer and others (2008)

Table 1. Mechanical parameters used
in this study and typical ranges of vari-
ation. (w.l.: weak layer)

Fig. 1. Geometry of the system: a weak layer interface under a
cohesive slab of depth h.

force vector at nodes andD the damping matrix. In our study,
the matrix D is taken as zero.

The system considered is a 2D (plane stress conditions) uni-
form slope inclined at an angle ✓, of length L = 50m (Fig. 1).
The x-axis is in the slope-parallel direction and the z-axis
is orthogonal to the slope. The system consists of a slab of
thickness h overlying a weak layer modeled as an interface
of zero thickness. The mesh is composed of 100 elements in
the slope-parallel direction x, and six elements in direction
z. We used quadrilateral elements for the slab (QUA4: four
nodes with 2 dof/node) and joint elements for the weak layer
interface (JOI2: four nodes with 2 dof/node). We checked
that the mesh resolution is fine enough so that it does not
influence the results to be presented (see in particular section
3.1).

The boundary conditions applied to slab are the following:
At the upper end of the slope (BC1) a shear stress �xz =
�⇢g(z + h) sin ✓ is applied in order to avoid bending of the
slab linked to finite size e↵ects. At the lower end (BC2), a
nil displacement in slope-parallel direction x is imposed. The
upper surface of the slab is free and the base is subjected to
an interface law, i.e. a law relating shear stress to tangential
displacement, which represents the weak layer.

2.3. Constitutive relationships
Snow is a very complex material whose mechanical behavior
is still not fully understood. In the present model, only the
ingredients necessary to produce realistic instability of the
system, namely strain-softening of the weak layer and elas-
ticity of the slab, are taken into account. Table 1 summarizes

Fig. 2. Weak layer constitutive law.

the value of the di↵erent mechanical parameters used in this
study.

Weak Layer

Various studies (McClung, 1979; Föhn and others, 1998; Mc-
Clung and Schweizer, 2006) have shown that weak snow layers
behave as strain-softening (or quasi-brittle) materials. The
softening is caused by the break of ice bridges at the micro-
scopic scale. In existing mechanical models (McClung, 1979;
Bazant and others, 2003; Fy↵e and Zaiser, 2004, 2007; Ma-
hajan and Joshi, 2008; Mahajan and others, 2010; Gaume
and others, 2011), weak layers are generally characterized by
a rupture displacement up and a critical softening displace-
ment �. The pre-peak behavior is considered to be elastic, but
sti↵ness values are very di�cult to obtain since these layers
are generally very thin and unstable.

In the present study, the weak layer is modeled as a displacement-
softening interface with a simple, linear piecewise relationship
between shear stress ⌧ and tangential displacement u (Fig. 2).
The value of the shear stress peak ⌧p is governed by the Mohr-
Coulomb criterion: ⌧p = c + �n tan�, with c the weak layer
cohesion, �n the normal stress and � the friction angle. The
friction angle has been chosen as constant � = 30� (De Mont-
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softening) interface with a Mohr-Coulomb rupture criterion
characterized by a cohesion c and a friction coe�cient µ =
tan 30�. A spatial heterogeneity of the weak layer is accounted
for through a stochastic distribution of the cohesion c with
a spherical covariance function of correlation length ✏. The
average cohesion is denoted hci and its standard deviation
�c.

Besides the evaluation of avalanche release depth distribu-
tions, this model enabled to evidence, a heterogeneity smooth-
ing e↵ect caused by stress redistribution due to slab elasticity
and characterized by the ration between correlation length ✏

and a typical length scale of the system ⇤ associated to elastic
e↵ects (see Gaume and others, 2012b,a, for more details).

3. RELEASE TYPES
Two types of avalanche releases were distinguished in the
simulations: (1) full slope release, where the entire simulated
slope is released without tensile failure within the slab (Fig. 1a);
(2) partial slope release, where tensile failure occurs within
the slab so that only a part of the slope is released (Fig. 1b).

Importantly, however, for both release types, the primary
rupture process observed is always the shear failure of the
weak layer. Slab rupture, when existent, systematically con-
stitutes a secondary process. In the case of a full slope release,
the heterogeneity magnitude is not su�cient to trigger a ten-
sile failure within the slab. The basal shear failure in the weak
layer thus propagates until the top boundary condition which
can be seen as an anchor point where slab tensile rupture
would occur (Fig. 1a).

Replaced in the context of natural avalanche paths, this
boundary condition can represent a strong geomorphological
feature susceptible to trigger the tensile failure (ridges, rocks,
trees, local convex zone, etc.). On the contrary, for partial
slope releases, the cohesion variations in the weak layer are
su�cient to generate the tensile failure within the system.
Local strong zones can e↵ectively stop the progression of the
basal failure and the excess of stress is redistributed in the
slab and engenders slab tensile opening.

4. RESULTS: PARAMETRIC ANALYSIS
In this section, we present the results in terms of partial slope
release probability also called tensile failure probability and

denoted Ptf as a fonction of the following model parameters:
tensile strength �T , correlation length ✏, slab depth h and
cohesion standard deviation �c. First, the standard deviation
is fixed (�c = 0.3 kPa) and the other parameters, tensile
strength �T , slab depth h and correlation length ✏ are varied
to understand their influence. Then ✏ is fixed at 0.5 m and
the influence of �c is investigated for di↵erent values of h.

4.1. Influence of �T

Fig. 2 represents the probability of tensile failure Ptf within
the system as a function of the tensile strength �T for dif-
ferent values of the correlation length ✏ and a constant slab
depth h = 1 m (left) and for di↵erent values of the slab depth
h and a constant correlation length ✏ = 0.5 m (right). Tensile
strength values are varied between 0.5 and 1.5 kPa. As ex-
pected, this probability decreases with the tensile strength �T
from 100% to 0%. The rate of decrease and tensile strength
values at 0 and 100 % depend on slab depth h and correlation
length ✏.

4.2. Influence of h
As shown in Fig. 2 (right), the probability Ptf decreases glob-
ally with slab depth h. The higher h is, the faster the prob-
ability decreases with �T . The values of �T for Ptf = 100%
is almost una↵ected by the slab depth h while the value for
Ptf = 0% is deacreasing with increasing slab depth h. In
more detail, Fig. 3 reports the tensile failure probability Ptf

as a function of h for di↵erent tensile strength values and a
constant correlation length ✏ = 0.5 m. For �T < 0.75 kPa,
Ptf is approximately equal to 100%, whereas, Ptf is approxi-
mately equal to 0% for �T > 1.5 kPa. For intermediate values
of �T , Ptf decreases from h = 0.5 m to h = 0.25 m. A single
simulation for h = 0.25 m was also performed for �T = 1 kPa
to confirm the increase of Ptf with h for h < 0.5 m that will
be highlighted be the statistical model developed in the next
section.

4.3. Influence of ✏
The influence of correlation length ✏ is also noticeable on
Fig. 2 (left). The higher ✏ is, the slighter the probability de-
creases with �T . Besides, for constant tensile strength values,
Ptf globally deacreases with ✏. In contrast with the influ-
ence of slab depth h, the values of �T for Ptf = 100% is

Fig. 1. Diagram representing the two types of failure observed in the simulations. (a) full-slope release: the localization of the slab
tensile failure is influenced by morphological features (rocks, trees, ridge, curvature...). (b) partial-slope release: the local heterogeneity is
su�cient to trigger the tensile failure within the slab. The red-colored part of the weak layer represents a local zone of important shear
strength. The blue curves represent an illustration of the heterogeneity of shear stress di↵erence �⌧ and the dotted line represents the
tensile strength �T .
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Parameter Typical value Range Reference

Slab density ⇢ 250kg/m3 100� 300kg/m3 Schweizer (1999)
Slab Young modulus E 1MPa 0.2� 12MPa Schweizer (1999)
Slab Poisson ratio ⌫ 0.2 0.1� 0.4 Schweizer (1999)
Slab viscosity ⌘ 108Pa.s 0.2� 5⇥ 108Pa.s Mellor (1975); Camponovo (1998)
W. l. cohesion c 1kPa 0.5� 2.5kPa Föhn and others (1998); Jamieson and

Johnston (2001)
W. l. friction angle � 30� 20� 40� De Montmollin (1978); van Herwijnen

and Heierli (2009)
W. l. displacement to failure u

p

2mm 1� 10mm McClung (1977)
W. l. residual displacement u

r

4mm 1� 10mm McClung (1977)
Correlation length ✏ of w.l. cohesion
variations

0.5� 40m 0.5� 10m Schweizer and others (2008)

Coe�cient of variation CV = �
c

/hci 30% 15� 50% Schweizer and others (2008)

Table 1. Mechanical parameters used
in this study and typical ranges of vari-
ation. (w.l.: weak layer)

Fig. 1. Geometry of the system: a weak layer interface under a
cohesive slab of depth h.

force vector at nodes andD the damping matrix. In our study,
the matrix D is taken as zero.

The system considered is a 2D (plane stress conditions) uni-
form slope inclined at an angle ✓, of length L = 50m (Fig. 1).
The x-axis is in the slope-parallel direction and the z-axis
is orthogonal to the slope. The system consists of a slab of
thickness h overlying a weak layer modeled as an interface
of zero thickness. The mesh is composed of 100 elements in
the slope-parallel direction x, and six elements in direction
z. We used quadrilateral elements for the slab (QUA4: four
nodes with 2 dof/node) and joint elements for the weak layer
interface (JOI2: four nodes with 2 dof/node). We checked
that the mesh resolution is fine enough so that it does not
influence the results to be presented (see in particular section
3.1).

The boundary conditions applied to slab are the following:
At the upper end of the slope (BC1) a shear stress �xz =
�⇢g(z + h) sin ✓ is applied in order to avoid bending of the
slab linked to finite size e↵ects. At the lower end (BC2), a
nil displacement in slope-parallel direction x is imposed. The
upper surface of the slab is free and the base is subjected to
an interface law, i.e. a law relating shear stress to tangential
displacement, which represents the weak layer.

2.3. Constitutive relationships
Snow is a very complex material whose mechanical behavior
is still not fully understood. In the present model, only the
ingredients necessary to produce realistic instability of the
system, namely strain-softening of the weak layer and elas-
ticity of the slab, are taken into account. Table 1 summarizes

Fig. 2. Weak layer constitutive law.

the value of the di↵erent mechanical parameters used in this
study.

Weak Layer

Various studies (McClung, 1979; Föhn and others, 1998; Mc-
Clung and Schweizer, 2006) have shown that weak snow layers
behave as strain-softening (or quasi-brittle) materials. The
softening is caused by the break of ice bridges at the micro-
scopic scale. In existing mechanical models (McClung, 1979;
Bazant and others, 2003; Fy↵e and Zaiser, 2004, 2007; Ma-
hajan and Joshi, 2008; Mahajan and others, 2010; Gaume
and others, 2011), weak layers are generally characterized by
a rupture displacement up and a critical softening displace-
ment �. The pre-peak behavior is considered to be elastic, but
sti↵ness values are very di�cult to obtain since these layers
are generally very thin and unstable.

In the present study, the weak layer is modeled as a displacement-
softening interface with a simple, linear piecewise relationship
between shear stress ⌧ and tangential displacement u (Fig. 2).
The value of the shear stress peak ⌧p is governed by the Mohr-
Coulomb criterion: ⌧p = c + �n tan�, with c the weak layer
cohesion, �n the normal stress and � the friction angle. The
friction angle has been chosen as constant � = 30� (De Mont-
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in kinetic energy and inertial effects can hardly occur. The
whole analysis can be done in quasi static regime and the
contribution of the term

∑
p∈V δ f p

i δx p
i becomes negligi-

ble. Equation (1) therefore reduces to

W µ
2 =

∑

p,q

δ f c
i δlc

i (2)

When important particles rearrangements occur in irre-
versible strain regime (sliding between particles, contact
opening and contact creation), the second term is likely to
be no longer negligible and its contribution may be consid-
erable.

In the next part, we will focus on the comparison between
macro and micro second order works and on the numerical
validation of Eq. (2) analytically developed above.

3 Numerical analysis using discrete element method

3.1 Discrete element model

In what follows, the incremental variation of a given variable
ξ denoted by δξ (δξ(t) = ξ̇(t)δt) during an infinitesimal
variation of time t, is approximated by finite increments in
the discrete elements method, thus will be rather denoted by
#ξ .

The vanishing of the second order work was proved to
be related to both porosity and confining pressure of the
assembly [21,30,31]. In order to cover as many cases as
possible and generalize the results found in this paper inde-
pendently from such parameters, numerical simulations were
conducted on two three-dimensional specimens (Fig. 1a) of
densely (porosity=0.38) and loosely (porosity=0.42) com-
pacted assembly of particles S1 and S2 respectively. We
used the software ‘Yade’ [40] based on the discrete element
method [3].

The motion of the particles is governed by the elonga-
tion of both a normal and a tangential spring created at the

initial contact point of each pairwise overlapping particles
(see Fig. 1b).

In the normal direction, the contact constitutive relation is
linear elastic and it assumes that the normal component f c

n
of the contact force is linearly related to the particle overlap
through the normal contact stiffness denoted by kn .

The tangential component f c
t of the contact force involves

similarly the tangential contact stiffness denoted by kt and
the tangential relative displacement which can be calculated
by integrating the relative tangential velocity vt in the contact
plane during the lifetime of the overlap.

The friction is incorporated at the contact level by the
Coulomb friction law, thus f c

t must obey the constraint
f c
t ≤ µ f c

n , where µ is the coefficient of friction. When this
limit is reached, the tangential relative motion is regarded
as sliding with a friction force µ f c

n directed opposite to
the tangential relative velocity. Thus, in the tangential
direction, the constitutive relation is linear elastic–purely
plastic.

Moreover, for cohesionless materials, the springs act until
the bodies depart from each others and come out of contact,
only compressive normal forces are allowed.

3.2 Numerical simulations

The two specimens are cubical in shape and contain 10,000
spherical particles of uniform radius distribution ranging
from 2 to 12 mm enclosed within six rigid frictionless walls.

The parameters in the contact constitutive relation are cho-
sen such that kn/D = 356 (MPa) and kt/kn = 0.42, where
D is the mean diameter of the two particles in contact. Inter-
particle friction angle ϕc is set to 35◦. The characteristics
and mechanical parameters of both specimens are detailed in
Table 1.

Both assemblies were compacted from initially sparse
arrangements of particles to an isotopic state by increasing
particles sizes until the desired isotropic pressure (σ1 = σ3 =

Fig. 1 A three dimensional
view of the specimen (a), the
inter-particle contact law (b)

(b)(a)

x
y

z nk cϕ
tk
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Mécanique         Géométrie	


!
Deux critères géométriques permettent d’expliquer (en 
partie) la localisation des contraintes mécaniques:	


!
a) forte courbure négative	


b) zones de constrictions
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Grains géométriques

II) Evaluation mécanique
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II) Evaluation mécanique
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Grains creux (cluster)



Conclusion et perspectives

•Algorithme géométrique  (courbure + constriction) permet de simplifier 
«mécaniquement» la microstructure obtenue par tomographie.	


!

•L’approche géométrique est pertinente d’un point de vue mécanique.	


!

•Comment représenter l’ensemble des grains dans un code DEM (Yade) ?	


!

•Evaluation de la simplification sur simulations à partir de la microstructure «complète» ou 
simplifiée.
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Merci de votre attention	


Questions ?

pascal.hagenmuller@irstea.fr
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Micro-tomographie

Prélèvements 	
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Image en niveaux de grisImage binaire air/glace !15
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