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Permafrost is a huge carbon reservoir

Permafrost covers ~15 million km?

- 11% of continental surfaces

Permafrost soils contain ~1500 PgC
- 2 times the atmospheric carbon content

- 60% of the world's soil carbon

Soil organic carbon
~ storage (0-3 m):

I 0.1-30 kg m2

30-50 kg m2
I 50-100 kg m2

I 100-260 kg m™

Schuur et al., 2015




The Arctic is warming faster than the rest of the globe

Surface air temperature change at +2°C global warming
(model projection)
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The Arctic is warming faster than the rest of the globe, resulting in permafrost warming
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The permafrost carbon-climate feedback could amplify global warming
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The permafrost carbon-climate feedback could amplify global warming
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Earth system models (ESMs) or land surface models (LSMs)
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Historically, permafrost has been seen as a potential carbon source...

Cumulative soil carbon change (Pg)

Schuur et al,,

Change in permafrost soil carbon by 2100 compared to present-day stocks
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..but the story gets more complicated as models become more complex

Change in permafrost soil carbon by 2100 compared to present-day stocks
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The permafrost carbon-climate feedback depends on the parameterization of soil respiration
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The permafrost carbon-climate feedback depends on the parameterization of soil respiration
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Parameterization of soil respiration in LSMs and ESMs

— Soil organic carbon dynamics follows a simple equation :

0SOC
ot

=I—kXSOCX0OXTt
N y,

Soil respiration

SOC = soil organic carbon concentration (kgC.m™)
| = SOC inputs (kgC.m=3s™)

k = decomposition rate (s™)

0 = moisture rate modifier [0-1]

T = temperature rate modifier [0-1]
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Parameterization of soil respiration in LSMs and ESMs

— Soil organic carbon dynamics follows a simple equation :
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Models are highly sensitive to Quo

— Soil organic carbon dynamics follows a simple equation :

0SOC
ot

=I—kXSOCX0OXTt
N y,

Soil respiration

SOC = soil organic carbon concentration (kgC.m™)
| = SOC inputs (kgC.m=3s™)

k = decomposition rate (s™)

0 = moisture rate modifier [0-1]

T = temperature rate modifier [0-1]

— T is generally represented in ESMs with :

Arrhenius equation or Van't Hoff laws
—Ea
— )\T—T)/10
T=AXe AT T=0Qy "

Quo is generally a fixed parameter
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But observations show that Q., depends on time
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Wang et al,, 2010



But observations show that Q., depends on time and space
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Another source of uncertainty comes from the response of vegetation to warming and CO.
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Arctic borealisation and shrubification

— Increase in shrub biomass, growth and reproduction in the Arctic tundra.

Observed changes

Tundra greenness
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Arctic borealisation and shrubification

— Increase in shrub biomass, growth and reproduction in the Arctic tundra.

— Colonisation of tundra by boreal species.
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Arctic borealisation and shrubification

— Increase in shrub biomass, growth and reproduction in the Arctic tundra.

a) Study area colonisations (BCI)
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The dynamics of vegetation could have a great impact on future carbon uptake

- Land surface model (JULES) simulations show a sustained carbon uptake due to the advance of

treeline in a high-warming scenario.

— Partially offsets soil carbon losses from permafrost thaw and microbial decomposition.
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Nitrogen release from permafrost thaw could also increase vegetation carbon uptake
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Nitrogen release from permafrost thaw could also increase vegetation carbon uptake
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ldealised 1pctCO2 experiment from C,MIP
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Land gains carbon throughout the simulation in the permafrost region

Changes in the permafrost region simulated by an Earth system model (IPSL-Perm-LandN)

ACiuna = Change in total land carbon (vegetation + soils)
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B 4xCO2 Gaillard et al. (in prep)




ACianais driven by CO, fertilization

Changes in the permafrost region simulated by an Earth system model (IPSL-Perm-LandN)
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Strong nitrogen effect compensates direct climate effect

Changes in the permafrost region simulated by an Earth system model (IPSL-Perm-LandN)
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Strong nitrogen effect compensates direct climate effect

Changes in the permafrost region simulated by an Earth system model (IPSL-Perm-LandN)

Contributions to total
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- Nitrogen effect assessed in few modelling studies

with contrasting results
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Strong nitrogen effect compensates direct climate effect

Changes in the permafrost region simulated by an Earth system model (IPSL-Perm-LandN)

Contributions to total

. climate effect
- Nitrogen effect assessed in few modelling studies
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- The representation of nitrogen dynamics after
permafrost thaw is key for accurately predicting the future
permafrost net carbon balance.
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Conclusion

— The future net carbon balance of the permafrost
region remains uncertain.
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- As LSMs and ESMs become more complex, they
start to integrate processes that could (partially?)
compensate for warming-induced permafrost soil
carbon losses.
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- Improvements of the physics of models are also
needed (snow dynamics, soil thermal properties
and hydrology, small-scale heterogeneity, abrupt
thaw processes..).



